Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x+\frac{\sqrt{3}}{2}y=-\frac{\sqrt{3}}{3},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{2}x+\frac{\sqrt{3}}{2}y=-\frac{\sqrt{3}}{3}
Solve \frac{1}{2}x+\frac{\sqrt{3}}{2}y=-\frac{\sqrt{3}}{3} for x by isolating x on the left hand side of the equal sign.
\frac{1}{2}x=\left(-\frac{\sqrt{3}}{2}\right)y-\frac{\sqrt{3}}{3}
Subtract \frac{\sqrt{3}}{2}y from both sides of the equation.
x=\left(-\sqrt{3}\right)y-\frac{2\sqrt{3}}{3}
Multiply both sides by 2.
y^{2}+\left(\left(-\sqrt{3}\right)y-\frac{2\sqrt{3}}{3}\right)^{2}=1
Substitute \left(-\sqrt{3}\right)y-\frac{2\sqrt{3}}{3} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+\left(-\sqrt{3}\right)^{2}y^{2}+2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)y+\left(-\frac{2\sqrt{3}}{3}\right)^{2}=1
Square \left(-\sqrt{3}\right)y-\frac{2\sqrt{3}}{3}.
\left(\left(-\sqrt{3}\right)^{2}+1\right)y^{2}+2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)y+\left(-\frac{2\sqrt{3}}{3}\right)^{2}=1
Add y^{2} to \left(-\sqrt{3}\right)^{2}y^{2}.
\left(\left(-\sqrt{3}\right)^{2}+1\right)y^{2}+2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)y+\left(-\frac{2\sqrt{3}}{3}\right)^{2}-1=0
Subtract 1 from both sides of the equation.
y=\frac{-2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)±\sqrt{\left(2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)\right)^{2}-4\left(\left(-\sqrt{3}\right)^{2}+1\right)\times \frac{1}{3}}}{2\left(\left(-\sqrt{3}\right)^{2}+1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\sqrt{3}\right)^{2} for a, 1\times 2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right) for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)±\sqrt{16-4\left(\left(-\sqrt{3}\right)^{2}+1\right)\times \frac{1}{3}}}{2\left(\left(-\sqrt{3}\right)^{2}+1\right)}
Square 1\times 2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right).
y=\frac{-2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)±\sqrt{16-16\times \frac{1}{3}}}{2\left(\left(-\sqrt{3}\right)^{2}+1\right)}
Multiply -4 times 1+1\left(-\sqrt{3}\right)^{2}.
y=\frac{-2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)±\sqrt{16-\frac{16}{3}}}{2\left(\left(-\sqrt{3}\right)^{2}+1\right)}
Multiply -16 times \frac{1}{3}.
y=\frac{-2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)±\sqrt{\frac{32}{3}}}{2\left(\left(-\sqrt{3}\right)^{2}+1\right)}
Add 16 to -\frac{16}{3}.
y=\frac{-2\left(-\sqrt{3}\right)\left(-\frac{2\sqrt{3}}{3}\right)±\frac{4\sqrt{6}}{3}}{2\left(\left(-\sqrt{3}\right)^{2}+1\right)}
Take the square root of \frac{32}{3}.
y=\frac{-4±\frac{4\sqrt{6}}{3}}{8}
Multiply 2 times 1+1\left(-\sqrt{3}\right)^{2}.
y=\frac{\frac{4\sqrt{6}}{3}-4}{8}
Now solve the equation y=\frac{-4±\frac{4\sqrt{6}}{3}}{8} when ± is plus. Add -4 to \frac{4\sqrt{6}}{3}.
y=\frac{\sqrt{6}}{6}-\frac{1}{2}
Divide -4+\frac{4\sqrt{6}}{3} by 8.
y=\frac{-\frac{4\sqrt{6}}{3}-4}{8}
Now solve the equation y=\frac{-4±\frac{4\sqrt{6}}{3}}{8} when ± is minus. Subtract \frac{4\sqrt{6}}{3} from -4.
y=-\frac{\sqrt{6}}{6}-\frac{1}{2}
Divide -4-\frac{4\sqrt{6}}{3} by 8.
x=\left(-\sqrt{3}\right)\left(\frac{\sqrt{6}}{6}-\frac{1}{2}\right)-\frac{2\sqrt{3}}{3}
There are two solutions for y: -\frac{1}{2}+\frac{\sqrt{6}}{6} and -\frac{1}{2}-\frac{\sqrt{6}}{6}. Substitute -\frac{1}{2}+\frac{\sqrt{6}}{6} for y in the equation x=\left(-\sqrt{3}\right)y-\frac{2\sqrt{3}}{3} to find the corresponding solution for x that satisfies both equations.
x=\left(-\sqrt{3}\right)\left(-\frac{\sqrt{6}}{6}-\frac{1}{2}\right)-\frac{2\sqrt{3}}{3}
Now substitute -\frac{1}{2}-\frac{\sqrt{6}}{6} for y in the equation x=\left(-\sqrt{3}\right)y-\frac{2\sqrt{3}}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\left(-\sqrt{3}\right)\left(\frac{\sqrt{6}}{6}-\frac{1}{2}\right)-\frac{2\sqrt{3}}{3},y=\frac{\sqrt{6}}{6}-\frac{1}{2}\text{ or }x=\left(-\sqrt{3}\right)\left(-\frac{\sqrt{6}}{6}-\frac{1}{2}\right)-\frac{2\sqrt{3}}{3},y=-\frac{\sqrt{6}}{6}-\frac{1}{2}
The system is now solved.