Solve for U_1, U_2, I_x
U_{1}=20
U_{2}=0
I_{x}=2
Share
Copied to clipboard
6U_{1}-5U_{2}=20+50I_{x} 3U_{2}-2U_{1}+20I_{x}=0 U_{1}=10I_{x}
Multiply each equation by the least common multiple of denominators in it. Simplify.
U_{1}=10I_{x} 3U_{2}-2U_{1}+20I_{x}=0 6U_{1}-5U_{2}=20+50I_{x}
Reorder the equations.
3U_{2}-2\times 10I_{x}+20I_{x}=0 6\times 10I_{x}-5U_{2}=20+50I_{x}
Substitute 10I_{x} for U_{1} in the second and third equation.
U_{2}=0 I_{x}=2+\frac{1}{2}U_{2}
Solve these equations for U_{2} and I_{x} respectively.
I_{x}=2+\frac{1}{2}\times 0
Substitute 0 for U_{2} in the equation I_{x}=2+\frac{1}{2}U_{2}.
I_{x}=2
Calculate I_{x} from I_{x}=2+\frac{1}{2}\times 0.
U_{1}=10\times 2
Substitute 2 for I_{x} in the equation U_{1}=10I_{x}.
U_{1}=20
Calculate U_{1} from U_{1}=10\times 2.
U_{1}=20 U_{2}=0 I_{x}=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}