Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{42}}{28}\left(-5\right)\times \frac{4\sqrt{7}}{7}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
\frac{-\sqrt{42}\times 5}{28}\times \frac{4\sqrt{7}}{7}
Express \frac{\sqrt{42}}{28}\left(-5\right) as a single fraction.
\frac{-\sqrt{42}\times 5\times 4\sqrt{7}}{28\times 7}
Multiply \frac{-\sqrt{42}\times 5}{28} times \frac{4\sqrt{7}}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-5\sqrt{7}\sqrt{42}}{7\times 7}
Cancel out 4 in both numerator and denominator.
\frac{-5\sqrt{7}\sqrt{7}\sqrt{6}}{7\times 7}
Factor 42=7\times 6. Rewrite the square root of the product \sqrt{7\times 6} as the product of square roots \sqrt{7}\sqrt{6}.
\frac{-5\times 7\sqrt{6}}{7\times 7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{-35\sqrt{6}}{7\times 7}
Multiply -5 and 7 to get -35.
\frac{-35\sqrt{6}}{49}
Multiply 7 and 7 to get 49.
-\frac{5}{7}\sqrt{6}
Divide -35\sqrt{6} by 49 to get -\frac{5}{7}\sqrt{6}.