Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-a\right)^{2}-\left(x+a\right)\left(x+a\right)=a\left(2x-ab\right)
Multiply x-a and x-a to get \left(x-a\right)^{2}.
\left(x-a\right)^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Multiply x+a and x+a to get \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x^{2}+2xa+a^{2}\right)=a\left(2x-ab\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-x^{2}-2xa-a^{2}=a\left(2x-ab\right)
To find the opposite of x^{2}+2xa+a^{2}, find the opposite of each term.
-2xa+a^{2}-2xa-a^{2}=a\left(2x-ab\right)
Combine x^{2} and -x^{2} to get 0.
-4xa+a^{2}-a^{2}=a\left(2x-ab\right)
Combine -2xa and -2xa to get -4xa.
-4xa=a\left(2x-ab\right)
Combine a^{2} and -a^{2} to get 0.
-4xa=2ax-ba^{2}
Use the distributive property to multiply a by 2x-ab.
2ax-ba^{2}=-4xa
Swap sides so that all variable terms are on the left hand side.
-ba^{2}=-4xa-2ax
Subtract 2ax from both sides.
-ba^{2}=-6xa
Combine -4xa and -2ax to get -6xa.
\left(-a^{2}\right)b=-6ax
The equation is in standard form.
\frac{\left(-a^{2}\right)b}{-a^{2}}=-\frac{6ax}{-a^{2}}
Divide both sides by -a^{2}.
b=-\frac{6ax}{-a^{2}}
Dividing by -a^{2} undoes the multiplication by -a^{2}.
b=\frac{6x}{a}
Divide -6xa by -a^{2}.
\left(x-a\right)^{2}-\left(x+a\right)\left(x+a\right)=a\left(2x-ab\right)
Multiply x-a and x-a to get \left(x-a\right)^{2}.
\left(x-a\right)^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Multiply x+a and x+a to get \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x^{2}+2xa+a^{2}\right)=a\left(2x-ab\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-x^{2}-2xa-a^{2}=a\left(2x-ab\right)
To find the opposite of x^{2}+2xa+a^{2}, find the opposite of each term.
-2xa+a^{2}-2xa-a^{2}=a\left(2x-ab\right)
Combine x^{2} and -x^{2} to get 0.
-4xa+a^{2}-a^{2}=a\left(2x-ab\right)
Combine -2xa and -2xa to get -4xa.
-4xa=a\left(2x-ab\right)
Combine a^{2} and -a^{2} to get 0.
-4xa=2ax-ba^{2}
Use the distributive property to multiply a by 2x-ab.
2ax-ba^{2}=-4xa
Swap sides so that all variable terms are on the left hand side.
-ba^{2}=-4xa-2ax
Subtract 2ax from both sides.
-ba^{2}=-6xa
Combine -4xa and -2ax to get -6xa.
\left(-a^{2}\right)b=-6ax
The equation is in standard form.
\frac{\left(-a^{2}\right)b}{-a^{2}}=-\frac{6ax}{-a^{2}}
Divide both sides by -a^{2}.
b=-\frac{6ax}{-a^{2}}
Dividing by -a^{2} undoes the multiplication by -a^{2}.
b=\frac{6x}{a}
Divide -6xa by -a^{2}.