Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{6x}{a}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{6x}{a}\text{, }&a\neq 0\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=\frac{6x}{b}\text{, }&b\neq 0\\a\in \mathrm{C}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=\frac{6x}{b}\text{, }&b\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x-a\right)^{2}-\left(x+a\right)\left(x+a\right)=a\left(2x-ab\right)
Multiply x-a and x-a to get \left(x-a\right)^{2}.
\left(x-a\right)^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Multiply x+a and x+a to get \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x^{2}+2xa+a^{2}\right)=a\left(2x-ab\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-x^{2}-2xa-a^{2}=a\left(2x-ab\right)
To find the opposite of x^{2}+2xa+a^{2}, find the opposite of each term.
-2xa+a^{2}-2xa-a^{2}=a\left(2x-ab\right)
Combine x^{2} and -x^{2} to get 0.
-4xa+a^{2}-a^{2}=a\left(2x-ab\right)
Combine -2xa and -2xa to get -4xa.
-4xa=a\left(2x-ab\right)
Combine a^{2} and -a^{2} to get 0.
-4xa=2ax-ba^{2}
Use the distributive property to multiply a by 2x-ab.
2ax-ba^{2}=-4xa
Swap sides so that all variable terms are on the left hand side.
-ba^{2}=-4xa-2ax
Subtract 2ax from both sides.
-ba^{2}=-6xa
Combine -4xa and -2ax to get -6xa.
\left(-a^{2}\right)b=-6ax
The equation is in standard form.
\frac{\left(-a^{2}\right)b}{-a^{2}}=-\frac{6ax}{-a^{2}}
Divide both sides by -a^{2}.
b=-\frac{6ax}{-a^{2}}
Dividing by -a^{2} undoes the multiplication by -a^{2}.
b=\frac{6x}{a}
Divide -6xa by -a^{2}.
\left(x-a\right)^{2}-\left(x+a\right)\left(x+a\right)=a\left(2x-ab\right)
Multiply x-a and x-a to get \left(x-a\right)^{2}.
\left(x-a\right)^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Multiply x+a and x+a to get \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x+a\right)^{2}=a\left(2x-ab\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}-2xa+a^{2}-\left(x^{2}+2xa+a^{2}\right)=a\left(2x-ab\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+a\right)^{2}.
x^{2}-2xa+a^{2}-x^{2}-2xa-a^{2}=a\left(2x-ab\right)
To find the opposite of x^{2}+2xa+a^{2}, find the opposite of each term.
-2xa+a^{2}-2xa-a^{2}=a\left(2x-ab\right)
Combine x^{2} and -x^{2} to get 0.
-4xa+a^{2}-a^{2}=a\left(2x-ab\right)
Combine -2xa and -2xa to get -4xa.
-4xa=a\left(2x-ab\right)
Combine a^{2} and -a^{2} to get 0.
-4xa=2ax-ba^{2}
Use the distributive property to multiply a by 2x-ab.
2ax-ba^{2}=-4xa
Swap sides so that all variable terms are on the left hand side.
-ba^{2}=-4xa-2ax
Subtract 2ax from both sides.
-ba^{2}=-6xa
Combine -4xa and -2ax to get -6xa.
\left(-a^{2}\right)b=-6ax
The equation is in standard form.
\frac{\left(-a^{2}\right)b}{-a^{2}}=-\frac{6ax}{-a^{2}}
Divide both sides by -a^{2}.
b=-\frac{6ax}{-a^{2}}
Dividing by -a^{2} undoes the multiplication by -a^{2}.
b=\frac{6x}{a}
Divide -6xa by -a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}