Solve for x
x=\frac{5y}{3}+2
Solve for y
y=\frac{3\left(x-2\right)}{5}
Graph
Share
Copied to clipboard
xy+3x-5y-15=xy-9
Use the distributive property to multiply x-5 by y+3.
xy+3x-5y-15-xy=-9
Subtract xy from both sides.
3x-5y-15=-9
Combine xy and -xy to get 0.
3x-15=-9+5y
Add 5y to both sides.
3x=-9+5y+15
Add 15 to both sides.
3x=6+5y
Add -9 and 15 to get 6.
3x=5y+6
The equation is in standard form.
\frac{3x}{3}=\frac{5y+6}{3}
Divide both sides by 3.
x=\frac{5y+6}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{5y}{3}+2
Divide 6+5y by 3.
xy+3x-5y-15=xy-9
Use the distributive property to multiply x-5 by y+3.
xy+3x-5y-15-xy=-9
Subtract xy from both sides.
3x-5y-15=-9
Combine xy and -xy to get 0.
-5y-15=-9-3x
Subtract 3x from both sides.
-5y=-9-3x+15
Add 15 to both sides.
-5y=6-3x
Add -9 and 15 to get 6.
\frac{-5y}{-5}=\frac{6-3x}{-5}
Divide both sides by -5.
y=\frac{6-3x}{-5}
Dividing by -5 undoes the multiplication by -5.
y=\frac{3x-6}{5}
Divide 6-3x by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}