Solve for x
x=500\sqrt{6}+3750\approx 4974.744871392
x=3750-500\sqrt{6}\approx 2525.255128608
Graph
Share
Copied to clipboard
50\left(x-2500\right)\left(8+\frac{4900-x}{50}\times 4\right)=250000
Multiply both sides of the equation by 50.
50\left(x-2500\right)\left(8+\frac{\left(4900-x\right)\times 4}{50}\right)=250000
Express \frac{4900-x}{50}\times 4 as a single fraction.
\left(50x-125000\right)\left(8+\frac{\left(4900-x\right)\times 4}{50}\right)=250000
Use the distributive property to multiply 50 by x-2500.
\left(50x-125000\right)\left(8+\frac{19600-4x}{50}\right)=250000
Use the distributive property to multiply 4900-x by 4.
400x+50x\times \frac{19600-4x}{50}-1000000-125000\times \frac{19600-4x}{50}=250000
Apply the distributive property by multiplying each term of 50x-125000 by each term of 8+\frac{19600-4x}{50}.
400x+\frac{50\left(19600-4x\right)}{50}x-1000000-125000\times \frac{19600-4x}{50}=250000
Express 50\times \frac{19600-4x}{50} as a single fraction.
400x+\left(19600-4x\right)x-1000000-125000\times \frac{19600-4x}{50}=250000
Cancel out 50 and 50.
400x+19600x-4x^{2}-1000000-125000\times \frac{19600-4x}{50}=250000
Use the distributive property to multiply 19600-4x by x.
20000x-4x^{2}-1000000-125000\times \frac{19600-4x}{50}=250000
Combine 400x and 19600x to get 20000x.
20000x-4x^{2}-1000000-2500\left(19600-4x\right)=250000
Cancel out 50, the greatest common factor in 125000 and 50.
20000x-4x^{2}-1000000-49000000+10000x=250000
Use the distributive property to multiply -2500 by 19600-4x.
20000x-4x^{2}-50000000+10000x=250000
Subtract 49000000 from -1000000 to get -50000000.
30000x-4x^{2}-50000000=250000
Combine 20000x and 10000x to get 30000x.
30000x-4x^{2}-50000000-250000=0
Subtract 250000 from both sides.
30000x-4x^{2}-50250000=0
Subtract 250000 from -50000000 to get -50250000.
-4x^{2}+30000x-50250000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30000±\sqrt{30000^{2}-4\left(-4\right)\left(-50250000\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 30000 for b, and -50250000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30000±\sqrt{900000000-4\left(-4\right)\left(-50250000\right)}}{2\left(-4\right)}
Square 30000.
x=\frac{-30000±\sqrt{900000000+16\left(-50250000\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-30000±\sqrt{900000000-804000000}}{2\left(-4\right)}
Multiply 16 times -50250000.
x=\frac{-30000±\sqrt{96000000}}{2\left(-4\right)}
Add 900000000 to -804000000.
x=\frac{-30000±4000\sqrt{6}}{2\left(-4\right)}
Take the square root of 96000000.
x=\frac{-30000±4000\sqrt{6}}{-8}
Multiply 2 times -4.
x=\frac{4000\sqrt{6}-30000}{-8}
Now solve the equation x=\frac{-30000±4000\sqrt{6}}{-8} when ± is plus. Add -30000 to 4000\sqrt{6}.
x=3750-500\sqrt{6}
Divide -30000+4000\sqrt{6} by -8.
x=\frac{-4000\sqrt{6}-30000}{-8}
Now solve the equation x=\frac{-30000±4000\sqrt{6}}{-8} when ± is minus. Subtract 4000\sqrt{6} from -30000.
x=500\sqrt{6}+3750
Divide -30000-4000\sqrt{6} by -8.
x=3750-500\sqrt{6} x=500\sqrt{6}+3750
The equation is now solved.
50\left(x-2500\right)\left(8+\frac{4900-x}{50}\times 4\right)=250000
Multiply both sides of the equation by 50.
50\left(x-2500\right)\left(8+\frac{\left(4900-x\right)\times 4}{50}\right)=250000
Express \frac{4900-x}{50}\times 4 as a single fraction.
\left(50x-125000\right)\left(8+\frac{\left(4900-x\right)\times 4}{50}\right)=250000
Use the distributive property to multiply 50 by x-2500.
\left(50x-125000\right)\left(8+\frac{19600-4x}{50}\right)=250000
Use the distributive property to multiply 4900-x by 4.
400x+50x\times \frac{19600-4x}{50}-1000000-125000\times \frac{19600-4x}{50}=250000
Apply the distributive property by multiplying each term of 50x-125000 by each term of 8+\frac{19600-4x}{50}.
400x+\frac{50\left(19600-4x\right)}{50}x-1000000-125000\times \frac{19600-4x}{50}=250000
Express 50\times \frac{19600-4x}{50} as a single fraction.
400x+\left(19600-4x\right)x-1000000-125000\times \frac{19600-4x}{50}=250000
Cancel out 50 and 50.
400x+19600x-4x^{2}-1000000-125000\times \frac{19600-4x}{50}=250000
Use the distributive property to multiply 19600-4x by x.
20000x-4x^{2}-1000000-125000\times \frac{19600-4x}{50}=250000
Combine 400x and 19600x to get 20000x.
20000x-4x^{2}-1000000-2500\left(19600-4x\right)=250000
Cancel out 50, the greatest common factor in 125000 and 50.
20000x-4x^{2}-1000000-49000000+10000x=250000
Use the distributive property to multiply -2500 by 19600-4x.
20000x-4x^{2}-50000000+10000x=250000
Subtract 49000000 from -1000000 to get -50000000.
30000x-4x^{2}-50000000=250000
Combine 20000x and 10000x to get 30000x.
30000x-4x^{2}=250000+50000000
Add 50000000 to both sides.
30000x-4x^{2}=50250000
Add 250000 and 50000000 to get 50250000.
-4x^{2}+30000x=50250000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+30000x}{-4}=\frac{50250000}{-4}
Divide both sides by -4.
x^{2}+\frac{30000}{-4}x=\frac{50250000}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-7500x=\frac{50250000}{-4}
Divide 30000 by -4.
x^{2}-7500x=-12562500
Divide 50250000 by -4.
x^{2}-7500x+\left(-3750\right)^{2}=-12562500+\left(-3750\right)^{2}
Divide -7500, the coefficient of the x term, by 2 to get -3750. Then add the square of -3750 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7500x+14062500=-12562500+14062500
Square -3750.
x^{2}-7500x+14062500=1500000
Add -12562500 to 14062500.
\left(x-3750\right)^{2}=1500000
Factor x^{2}-7500x+14062500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3750\right)^{2}}=\sqrt{1500000}
Take the square root of both sides of the equation.
x-3750=500\sqrt{6} x-3750=-500\sqrt{6}
Simplify.
x=500\sqrt{6}+3750 x=3750-500\sqrt{6}
Add 3750 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}