Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-x\sqrt{3}-x+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of x-1+\sqrt{3} by each term of x-1-\sqrt{3}.
x^{2}-2x-x\sqrt{3}+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2}
Combine -x and -x to get -2x.
x^{2}-2x+1+\sqrt{3}-\sqrt{3}-\left(\sqrt{3}\right)^{2}
Combine -x\sqrt{3} and \sqrt{3}x to get 0.
x^{2}-2x+1-\left(\sqrt{3}\right)^{2}
Combine \sqrt{3} and -\sqrt{3} to get 0.
x^{2}-2x+1-3
The square of \sqrt{3} is 3.
x^{2}-2x-2
Subtract 3 from 1 to get -2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x-x\sqrt{3}-x+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2})
Apply the distributive property by multiplying each term of x-1+\sqrt{3} by each term of x-1-\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x-x\sqrt{3}+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2})
Combine -x and -x to get -2x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1+\sqrt{3}-\sqrt{3}-\left(\sqrt{3}\right)^{2})
Combine -x\sqrt{3} and \sqrt{3}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-\left(\sqrt{3}\right)^{2})
Combine \sqrt{3} and -\sqrt{3} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-3)
The square of \sqrt{3} is 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x-2)
Subtract 3 from 1 to get -2.
2x^{2-1}-2x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
2x^{1}-2x^{1-1}
Subtract 1 from 2.
2x^{1}-2x^{0}
Subtract 1 from 1.
2x-2x^{0}
For any term t, t^{1}=t.
2x-2
For any term t except 0, t^{0}=1.