Evaluate
x^{2}-2x-2
Differentiate w.r.t. x
2\left(x-1\right)
Graph
Share
Copied to clipboard
x^{2}-x-x\sqrt{3}-x+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of x-1+\sqrt{3} by each term of x-1-\sqrt{3}.
x^{2}-2x-x\sqrt{3}+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2}
Combine -x and -x to get -2x.
x^{2}-2x+1+\sqrt{3}-\sqrt{3}-\left(\sqrt{3}\right)^{2}
Combine -x\sqrt{3} and \sqrt{3}x to get 0.
x^{2}-2x+1-\left(\sqrt{3}\right)^{2}
Combine \sqrt{3} and -\sqrt{3} to get 0.
x^{2}-2x+1-3
The square of \sqrt{3} is 3.
x^{2}-2x-2
Subtract 3 from 1 to get -2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x-x\sqrt{3}-x+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2})
Apply the distributive property by multiplying each term of x-1+\sqrt{3} by each term of x-1-\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x-x\sqrt{3}+1+\sqrt{3}+\sqrt{3}x-\sqrt{3}-\left(\sqrt{3}\right)^{2})
Combine -x and -x to get -2x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1+\sqrt{3}-\sqrt{3}-\left(\sqrt{3}\right)^{2})
Combine -x\sqrt{3} and \sqrt{3}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-\left(\sqrt{3}\right)^{2})
Combine \sqrt{3} and -\sqrt{3} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-3)
The square of \sqrt{3} is 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x-2)
Subtract 3 from 1 to get -2.
2x^{2-1}-2x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
2x^{1}-2x^{1-1}
Subtract 1 from 2.
2x^{1}-2x^{0}
Subtract 1 from 1.
2x-2x^{0}
For any term t, t^{1}=t.
2x-2
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}