Solve for x
x=\frac{y+175}{y+25}
y\neq -25
Solve for y
y=-\frac{25\left(x-7\right)}{x-1}
x\neq 1
Graph
Share
Copied to clipboard
xy+25x-y-25=150
Use the distributive property to multiply x-1 by y+25.
xy+25x-25=150+y
Add y to both sides.
xy+25x=150+y+25
Add 25 to both sides.
xy+25x=175+y
Add 150 and 25 to get 175.
\left(y+25\right)x=175+y
Combine all terms containing x.
\left(y+25\right)x=y+175
The equation is in standard form.
\frac{\left(y+25\right)x}{y+25}=\frac{y+175}{y+25}
Divide both sides by y+25.
x=\frac{y+175}{y+25}
Dividing by y+25 undoes the multiplication by y+25.
xy+25x-y-25=150
Use the distributive property to multiply x-1 by y+25.
xy-y-25=150-25x
Subtract 25x from both sides.
xy-y=150-25x+25
Add 25 to both sides.
xy-y=175-25x
Add 150 and 25 to get 175.
\left(x-1\right)y=175-25x
Combine all terms containing y.
\frac{\left(x-1\right)y}{x-1}=\frac{175-25x}{x-1}
Divide both sides by x-1.
y=\frac{175-25x}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
y=\frac{25\left(7-x\right)}{x-1}
Divide 175-25x by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}