Solve for x
x=0
x=0.3
Graph
Share
Copied to clipboard
x^{2}-0.3x=0
Use the distributive property to multiply x-0.3 by x.
x\left(x-0.3\right)=0
Factor out x.
x=0 x=\frac{3}{10}
To find equation solutions, solve x=0 and x-0.3=0.
x^{2}-0.3x=0
Use the distributive property to multiply x-0.3 by x.
x=\frac{-\left(-0.3\right)±\sqrt{\left(-0.3\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -0.3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.3\right)±\frac{3}{10}}{2}
Take the square root of \left(-0.3\right)^{2}.
x=\frac{0.3±\frac{3}{10}}{2}
The opposite of -0.3 is 0.3.
x=\frac{\frac{3}{5}}{2}
Now solve the equation x=\frac{0.3±\frac{3}{10}}{2} when ± is plus. Add 0.3 to \frac{3}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{10}
Divide \frac{3}{5} by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{0.3±\frac{3}{10}}{2} when ± is minus. Subtract \frac{3}{10} from 0.3 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by 2.
x=\frac{3}{10} x=0
The equation is now solved.
x^{2}-0.3x=0
Use the distributive property to multiply x-0.3 by x.
x^{2}-0.3x+\left(-0.15\right)^{2}=\left(-0.15\right)^{2}
Divide -0.3, the coefficient of the x term, by 2 to get -0.15. Then add the square of -0.15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.3x+0.0225=0.0225
Square -0.15 by squaring both the numerator and the denominator of the fraction.
\left(x-0.15\right)^{2}=0.0225
Factor x^{2}-0.3x+0.0225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.15\right)^{2}}=\sqrt{0.0225}
Take the square root of both sides of the equation.
x-0.15=\frac{3}{20} x-0.15=-\frac{3}{20}
Simplify.
x=\frac{3}{10} x=0
Add 0.15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}