Solve for x
x=\sqrt{2}\approx 1.414213562
x=-\sqrt{2}\approx -1.414213562
Graph
Share
Copied to clipboard
x^{2}+\frac{3}{2}x-1+\left(x-\frac{1}{3}\right)\left(x+3\right)=x\left(\frac{25}{6}+x\right)
Use the distributive property to multiply x-\frac{1}{2} by x+2 and combine like terms.
x^{2}+\frac{3}{2}x-1+x^{2}+\frac{8}{3}x-1=x\left(\frac{25}{6}+x\right)
Use the distributive property to multiply x-\frac{1}{3} by x+3 and combine like terms.
2x^{2}+\frac{3}{2}x-1+\frac{8}{3}x-1=x\left(\frac{25}{6}+x\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+\frac{25}{6}x-1-1=x\left(\frac{25}{6}+x\right)
Combine \frac{3}{2}x and \frac{8}{3}x to get \frac{25}{6}x.
2x^{2}+\frac{25}{6}x-2=x\left(\frac{25}{6}+x\right)
Subtract 1 from -1 to get -2.
2x^{2}+\frac{25}{6}x-2=\frac{25}{6}x+x^{2}
Use the distributive property to multiply x by \frac{25}{6}+x.
2x^{2}+\frac{25}{6}x-2-\frac{25}{6}x=x^{2}
Subtract \frac{25}{6}x from both sides.
2x^{2}-2=x^{2}
Combine \frac{25}{6}x and -\frac{25}{6}x to get 0.
2x^{2}-2-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-2=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
x=\sqrt{2} x=-\sqrt{2}
Take the square root of both sides of the equation.
x^{2}+\frac{3}{2}x-1+\left(x-\frac{1}{3}\right)\left(x+3\right)=x\left(\frac{25}{6}+x\right)
Use the distributive property to multiply x-\frac{1}{2} by x+2 and combine like terms.
x^{2}+\frac{3}{2}x-1+x^{2}+\frac{8}{3}x-1=x\left(\frac{25}{6}+x\right)
Use the distributive property to multiply x-\frac{1}{3} by x+3 and combine like terms.
2x^{2}+\frac{3}{2}x-1+\frac{8}{3}x-1=x\left(\frac{25}{6}+x\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+\frac{25}{6}x-1-1=x\left(\frac{25}{6}+x\right)
Combine \frac{3}{2}x and \frac{8}{3}x to get \frac{25}{6}x.
2x^{2}+\frac{25}{6}x-2=x\left(\frac{25}{6}+x\right)
Subtract 1 from -1 to get -2.
2x^{2}+\frac{25}{6}x-2=\frac{25}{6}x+x^{2}
Use the distributive property to multiply x by \frac{25}{6}+x.
2x^{2}+\frac{25}{6}x-2-\frac{25}{6}x=x^{2}
Subtract \frac{25}{6}x from both sides.
2x^{2}-2=x^{2}
Combine \frac{25}{6}x and -\frac{25}{6}x to get 0.
2x^{2}-2-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-2=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)}}{2}
Square 0.
x=\frac{0±\sqrt{8}}{2}
Multiply -4 times -2.
x=\frac{0±2\sqrt{2}}{2}
Take the square root of 8.
x=\sqrt{2}
Now solve the equation x=\frac{0±2\sqrt{2}}{2} when ± is plus.
x=-\sqrt{2}
Now solve the equation x=\frac{0±2\sqrt{2}}{2} when ± is minus.
x=\sqrt{2} x=-\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}