Solve for x
x=2\sqrt{385}-65\approx -25.757166259
x=-2\sqrt{385}-65\approx -104.242833741
Graph
Share
Copied to clipboard
2x^{2}+260x+6000-450=180
Use the distributive property to multiply x+30 by 2x+200 and combine like terms.
2x^{2}+260x+5550=180
Subtract 450 from 6000 to get 5550.
2x^{2}+260x+5550-180=0
Subtract 180 from both sides.
2x^{2}+260x+5370=0
Subtract 180 from 5550 to get 5370.
x=\frac{-260±\sqrt{260^{2}-4\times 2\times 5370}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 260 for b, and 5370 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-260±\sqrt{67600-4\times 2\times 5370}}{2\times 2}
Square 260.
x=\frac{-260±\sqrt{67600-8\times 5370}}{2\times 2}
Multiply -4 times 2.
x=\frac{-260±\sqrt{67600-42960}}{2\times 2}
Multiply -8 times 5370.
x=\frac{-260±\sqrt{24640}}{2\times 2}
Add 67600 to -42960.
x=\frac{-260±8\sqrt{385}}{2\times 2}
Take the square root of 24640.
x=\frac{-260±8\sqrt{385}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{385}-260}{4}
Now solve the equation x=\frac{-260±8\sqrt{385}}{4} when ± is plus. Add -260 to 8\sqrt{385}.
x=2\sqrt{385}-65
Divide -260+8\sqrt{385} by 4.
x=\frac{-8\sqrt{385}-260}{4}
Now solve the equation x=\frac{-260±8\sqrt{385}}{4} when ± is minus. Subtract 8\sqrt{385} from -260.
x=-2\sqrt{385}-65
Divide -260-8\sqrt{385} by 4.
x=2\sqrt{385}-65 x=-2\sqrt{385}-65
The equation is now solved.
2x^{2}+260x+6000-450=180
Use the distributive property to multiply x+30 by 2x+200 and combine like terms.
2x^{2}+260x+5550=180
Subtract 450 from 6000 to get 5550.
2x^{2}+260x=180-5550
Subtract 5550 from both sides.
2x^{2}+260x=-5370
Subtract 5550 from 180 to get -5370.
\frac{2x^{2}+260x}{2}=-\frac{5370}{2}
Divide both sides by 2.
x^{2}+\frac{260}{2}x=-\frac{5370}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+130x=-\frac{5370}{2}
Divide 260 by 2.
x^{2}+130x=-2685
Divide -5370 by 2.
x^{2}+130x+65^{2}=-2685+65^{2}
Divide 130, the coefficient of the x term, by 2 to get 65. Then add the square of 65 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+130x+4225=-2685+4225
Square 65.
x^{2}+130x+4225=1540
Add -2685 to 4225.
\left(x+65\right)^{2}=1540
Factor x^{2}+130x+4225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+65\right)^{2}}=\sqrt{1540}
Take the square root of both sides of the equation.
x+65=2\sqrt{385} x+65=-2\sqrt{385}
Simplify.
x=2\sqrt{385}-65 x=-2\sqrt{385}-65
Subtract 65 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}