Solve for x
x=\frac{\sqrt{12777}}{6}-\frac{3}{2}\approx 17.339232115
x=-\frac{\sqrt{12777}}{6}-\frac{3}{2}\approx -20.339232115
Graph
Share
Copied to clipboard
\left(3x+3\right)\left(x+2\right)=1064
Use the distributive property to multiply x+1 by 3.
3x^{2}+9x+6=1064
Use the distributive property to multiply 3x+3 by x+2 and combine like terms.
3x^{2}+9x+6-1064=0
Subtract 1064 from both sides.
3x^{2}+9x-1058=0
Subtract 1064 from 6 to get -1058.
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-1058\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 9 for b, and -1058 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\left(-1058\right)}}{2\times 3}
Square 9.
x=\frac{-9±\sqrt{81-12\left(-1058\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-9±\sqrt{81+12696}}{2\times 3}
Multiply -12 times -1058.
x=\frac{-9±\sqrt{12777}}{2\times 3}
Add 81 to 12696.
x=\frac{-9±\sqrt{12777}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{12777}-9}{6}
Now solve the equation x=\frac{-9±\sqrt{12777}}{6} when ± is plus. Add -9 to \sqrt{12777}.
x=\frac{\sqrt{12777}}{6}-\frac{3}{2}
Divide -9+\sqrt{12777} by 6.
x=\frac{-\sqrt{12777}-9}{6}
Now solve the equation x=\frac{-9±\sqrt{12777}}{6} when ± is minus. Subtract \sqrt{12777} from -9.
x=-\frac{\sqrt{12777}}{6}-\frac{3}{2}
Divide -9-\sqrt{12777} by 6.
x=\frac{\sqrt{12777}}{6}-\frac{3}{2} x=-\frac{\sqrt{12777}}{6}-\frac{3}{2}
The equation is now solved.
\left(3x+3\right)\left(x+2\right)=1064
Use the distributive property to multiply x+1 by 3.
3x^{2}+9x+6=1064
Use the distributive property to multiply 3x+3 by x+2 and combine like terms.
3x^{2}+9x=1064-6
Subtract 6 from both sides.
3x^{2}+9x=1058
Subtract 6 from 1064 to get 1058.
\frac{3x^{2}+9x}{3}=\frac{1058}{3}
Divide both sides by 3.
x^{2}+\frac{9}{3}x=\frac{1058}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+3x=\frac{1058}{3}
Divide 9 by 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{1058}{3}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{1058}{3}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{4259}{12}
Add \frac{1058}{3} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{4259}{12}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{4259}{12}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{12777}}{6} x+\frac{3}{2}=-\frac{\sqrt{12777}}{6}
Simplify.
x=\frac{\sqrt{12777}}{6}-\frac{3}{2} x=-\frac{\sqrt{12777}}{6}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}