Solve for x
x=\sqrt{5}+1\approx 3.236067977
x=1-\sqrt{5}\approx -1.236067977
Graph
Share
Copied to clipboard
x^{2}-1=2x+3
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-2x=3
Subtract 2x from both sides.
x^{2}-1-2x-3=0
Subtract 3 from both sides.
x^{2}-4-2x=0
Subtract 3 from -1 to get -4.
x^{2}-2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-2\right)±\sqrt{20}}{2}
Add 4 to 16.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{2±2\sqrt{5}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{5}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{5}}{2} when ± is plus. Add 2 to 2\sqrt{5}.
x=\sqrt{5}+1
Divide 2+2\sqrt{5} by 2.
x=\frac{2-2\sqrt{5}}{2}
Now solve the equation x=\frac{2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 2.
x=1-\sqrt{5}
Divide 2-2\sqrt{5} by 2.
x=\sqrt{5}+1 x=1-\sqrt{5}
The equation is now solved.
x^{2}-1=2x+3
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-2x=3
Subtract 2x from both sides.
x^{2}-2x=3+1
Add 1 to both sides.
x^{2}-2x=4
Add 3 and 1 to get 4.
x^{2}-2x+1=4+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=5
Add 4 to 1.
\left(x-1\right)^{2}=5
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-1=\sqrt{5} x-1=-\sqrt{5}
Simplify.
x=\sqrt{5}+1 x=1-\sqrt{5}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}