Solve for m
m=-1-\frac{3}{x}-\frac{3}{x^{2}}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{3\left(-4m-1\right)}-3}{2\left(m+1\right)}\text{; }x=-\frac{\sqrt{3}\left(\sqrt{-4m-1}+\sqrt{3}\right)}{2\left(m+1\right)}\text{, }&m\neq -1\\x=-1\text{, }&m=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{3\left(-4m-1\right)}-3}{2\left(m+1\right)}\text{; }x=-\frac{\sqrt{3}\left(\sqrt{-4m-1}+\sqrt{3}\right)}{2\left(m+1\right)}\text{, }&m\neq -1\text{ and }m\leq -\frac{1}{4}\\x=-1\text{, }&m=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
mx^{2}+x^{2}+3x+3=0
Use the distributive property to multiply m+1 by x^{2}.
mx^{2}+3x+3=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
mx^{2}+3=-x^{2}-3x
Subtract 3x from both sides.
mx^{2}=-x^{2}-3x-3
Subtract 3 from both sides.
x^{2}m=-x^{2}-3x-3
The equation is in standard form.
\frac{x^{2}m}{x^{2}}=\frac{-x^{2}-3x-3}{x^{2}}
Divide both sides by x^{2}.
m=\frac{-x^{2}-3x-3}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
m=-1-\frac{3x+3}{x^{2}}
Divide -x^{2}-3x-3 by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}