Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}=2a^{3}-\frac{11}{5}a^{2}b+\frac{6}{5}ab^{2}-b^{3}
Use the distributive property to multiply a-b by 2a^{2}-\frac{1}{5}ab+b^{2} and combine like terms.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)=\frac{6}{5}ab^{2}-b^{3}
Subtract 2a^{3}-\frac{11}{5}a^{2}b from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)-\frac{6}{5}ab^{2}=-b^{3}
Subtract \frac{6}{5}ab^{2} from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-2a^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}=-b^{3}
To find the opposite of 2a^{3}-\frac{11}{5}a^{2}b, find the opposite of each term.
-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}=-b^{3}
Combine 2a^{3} and -2a^{3} to get 0.
\frac{6}{5}ab^{2}-b^{3}-\frac{6}{5}ab^{2}=-b^{3}
Combine -\frac{11}{5}ba^{2} and \frac{11}{5}a^{2}b to get 0.
-b^{3}=-b^{3}
Combine \frac{6}{5}ab^{2} and -\frac{6}{5}ab^{2} to get 0.
b^{3}=b^{3}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}=2a^{3}-\frac{11}{5}a^{2}b+\frac{6}{5}ab^{2}-b^{3}
Use the distributive property to multiply a-b by 2a^{2}-\frac{1}{5}ab+b^{2} and combine like terms.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)=\frac{6}{5}ab^{2}-b^{3}
Subtract 2a^{3}-\frac{11}{5}a^{2}b from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)-\frac{6}{5}ab^{2}=-b^{3}
Subtract \frac{6}{5}ab^{2} from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)-\frac{6}{5}ab^{2}+b^{3}=0
Add b^{3} to both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-2a^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}+b^{3}=0
To find the opposite of 2a^{3}-\frac{11}{5}a^{2}b, find the opposite of each term.
-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}+b^{3}=0
Combine 2a^{3} and -2a^{3} to get 0.
\frac{6}{5}ab^{2}-b^{3}-\frac{6}{5}ab^{2}+b^{3}=0
Combine -\frac{11}{5}ba^{2} and \frac{11}{5}a^{2}b to get 0.
-b^{3}+b^{3}=0
Combine \frac{6}{5}ab^{2} and -\frac{6}{5}ab^{2} to get 0.
0=0
Combine -b^{3} and b^{3} to get 0.
\text{true}
Compare 0 and 0.
b\in \mathrm{C}
This is true for any b.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}=2a^{3}-\frac{11}{5}a^{2}b+\frac{6}{5}ab^{2}-b^{3}
Use the distributive property to multiply a-b by 2a^{2}-\frac{1}{5}ab+b^{2} and combine like terms.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)=\frac{6}{5}ab^{2}-b^{3}
Subtract 2a^{3}-\frac{11}{5}a^{2}b from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)-\frac{6}{5}ab^{2}=-b^{3}
Subtract \frac{6}{5}ab^{2} from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-2a^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}=-b^{3}
To find the opposite of 2a^{3}-\frac{11}{5}a^{2}b, find the opposite of each term.
-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}=-b^{3}
Combine 2a^{3} and -2a^{3} to get 0.
\frac{6}{5}ab^{2}-b^{3}-\frac{6}{5}ab^{2}=-b^{3}
Combine -\frac{11}{5}ba^{2} and \frac{11}{5}a^{2}b to get 0.
-b^{3}=-b^{3}
Combine \frac{6}{5}ab^{2} and -\frac{6}{5}ab^{2} to get 0.
b^{3}=b^{3}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}=2a^{3}-\frac{11}{5}a^{2}b+\frac{6}{5}ab^{2}-b^{3}
Use the distributive property to multiply a-b by 2a^{2}-\frac{1}{5}ab+b^{2} and combine like terms.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)=\frac{6}{5}ab^{2}-b^{3}
Subtract 2a^{3}-\frac{11}{5}a^{2}b from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)-\frac{6}{5}ab^{2}=-b^{3}
Subtract \frac{6}{5}ab^{2} from both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-\left(2a^{3}-\frac{11}{5}a^{2}b\right)-\frac{6}{5}ab^{2}+b^{3}=0
Add b^{3} to both sides.
2a^{3}-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}-2a^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}+b^{3}=0
To find the opposite of 2a^{3}-\frac{11}{5}a^{2}b, find the opposite of each term.
-\frac{11}{5}ba^{2}+\frac{6}{5}ab^{2}-b^{3}+\frac{11}{5}a^{2}b-\frac{6}{5}ab^{2}+b^{3}=0
Combine 2a^{3} and -2a^{3} to get 0.
\frac{6}{5}ab^{2}-b^{3}-\frac{6}{5}ab^{2}+b^{3}=0
Combine -\frac{11}{5}ba^{2} and \frac{11}{5}a^{2}b to get 0.
-b^{3}+b^{3}=0
Combine \frac{6}{5}ab^{2} and -\frac{6}{5}ab^{2} to get 0.
0=0
Combine -b^{3} and b^{3} to get 0.
\text{true}
Compare 0 and 0.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}