Solve for a
a=-4+\frac{20}{x}
x\neq 0
Solve for x
x=\frac{20}{a+4}
a\neq -4
Graph
Share
Copied to clipboard
6x-ax-20=0\times 0\times 5x^{2}+10x-40
Use the distributive property to multiply 6-a by x.
6x-ax-20=0\times 5x^{2}+10x-40
Multiply 0 and 0 to get 0.
6x-ax-20=0x^{2}+10x-40
Multiply 0 and 5 to get 0.
6x-ax-20=0+10x-40
Anything times zero gives zero.
6x-ax-20=-40+10x
Subtract 40 from 0 to get -40.
-ax-20=-40+10x-6x
Subtract 6x from both sides.
-ax-20=-40+4x
Combine 10x and -6x to get 4x.
-ax=-40+4x+20
Add 20 to both sides.
-ax=-20+4x
Add -40 and 20 to get -20.
\left(-x\right)a=4x-20
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{4x-20}{-x}
Divide both sides by -x.
a=\frac{4x-20}{-x}
Dividing by -x undoes the multiplication by -x.
a=-4+\frac{20}{x}
Divide -20+4x by -x.
6x-ax-20=0\times 0\times 5x^{2}+10x-40
Use the distributive property to multiply 6-a by x.
6x-ax-20=0\times 5x^{2}+10x-40
Multiply 0 and 0 to get 0.
6x-ax-20=0x^{2}+10x-40
Multiply 0 and 5 to get 0.
6x-ax-20=0+10x-40
Anything times zero gives zero.
6x-ax-20=-40+10x
Subtract 40 from 0 to get -40.
6x-ax-20-10x=-40
Subtract 10x from both sides.
-4x-ax-20=-40
Combine 6x and -10x to get -4x.
-4x-ax=-40+20
Add 20 to both sides.
-4x-ax=-20
Add -40 and 20 to get -20.
\left(-4-a\right)x=-20
Combine all terms containing x.
\left(-a-4\right)x=-20
The equation is in standard form.
\frac{\left(-a-4\right)x}{-a-4}=-\frac{20}{-a-4}
Divide both sides by -4-a.
x=-\frac{20}{-a-4}
Dividing by -4-a undoes the multiplication by -4-a.
x=\frac{20}{a+4}
Divide -20 by -4-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}