Solve for m
m=4
Share
Copied to clipboard
36+9m+\frac{1}{2}m^{2}+8\left(6-\frac{1}{4}m\right)=6\left(6+8\right)+11m-8
Use the distributive property to multiply 6+\frac{1}{2}m by 6+m and combine like terms.
36+9m+\frac{1}{2}m^{2}+48-2m=6\left(6+8\right)+11m-8
Use the distributive property to multiply 8 by 6-\frac{1}{4}m.
84+9m+\frac{1}{2}m^{2}-2m=6\left(6+8\right)+11m-8
Add 36 and 48 to get 84.
84+7m+\frac{1}{2}m^{2}=6\left(6+8\right)+11m-8
Combine 9m and -2m to get 7m.
84+7m+\frac{1}{2}m^{2}=6\times 14+11m-8
Add 6 and 8 to get 14.
84+7m+\frac{1}{2}m^{2}=84+11m-8
Multiply 6 and 14 to get 84.
84+7m+\frac{1}{2}m^{2}=76+11m
Subtract 8 from 84 to get 76.
84+7m+\frac{1}{2}m^{2}-76=11m
Subtract 76 from both sides.
8+7m+\frac{1}{2}m^{2}=11m
Subtract 76 from 84 to get 8.
8+7m+\frac{1}{2}m^{2}-11m=0
Subtract 11m from both sides.
8-4m+\frac{1}{2}m^{2}=0
Combine 7m and -11m to get -4m.
\frac{1}{2}m^{2}-4m+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{1}{2}\times 8}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -4 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{1}{2}\times 8}}{2\times \frac{1}{2}}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16-2\times 8}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
m=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times \frac{1}{2}}
Multiply -2 times 8.
m=\frac{-\left(-4\right)±\sqrt{0}}{2\times \frac{1}{2}}
Add 16 to -16.
m=-\frac{-4}{2\times \frac{1}{2}}
Take the square root of 0.
m=\frac{4}{2\times \frac{1}{2}}
The opposite of -4 is 4.
m=\frac{4}{1}
Multiply 2 times \frac{1}{2}.
36+9m+\frac{1}{2}m^{2}+8\left(6-\frac{1}{4}m\right)=6\left(6+8\right)+11m-8
Use the distributive property to multiply 6+\frac{1}{2}m by 6+m and combine like terms.
36+9m+\frac{1}{2}m^{2}+48-2m=6\left(6+8\right)+11m-8
Use the distributive property to multiply 8 by 6-\frac{1}{4}m.
84+9m+\frac{1}{2}m^{2}-2m=6\left(6+8\right)+11m-8
Add 36 and 48 to get 84.
84+7m+\frac{1}{2}m^{2}=6\left(6+8\right)+11m-8
Combine 9m and -2m to get 7m.
84+7m+\frac{1}{2}m^{2}=6\times 14+11m-8
Add 6 and 8 to get 14.
84+7m+\frac{1}{2}m^{2}=84+11m-8
Multiply 6 and 14 to get 84.
84+7m+\frac{1}{2}m^{2}=76+11m
Subtract 8 from 84 to get 76.
84+7m+\frac{1}{2}m^{2}-11m=76
Subtract 11m from both sides.
84-4m+\frac{1}{2}m^{2}=76
Combine 7m and -11m to get -4m.
-4m+\frac{1}{2}m^{2}=76-84
Subtract 84 from both sides.
-4m+\frac{1}{2}m^{2}=-8
Subtract 84 from 76 to get -8.
\frac{1}{2}m^{2}-4m=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}m^{2}-4m}{\frac{1}{2}}=-\frac{8}{\frac{1}{2}}
Multiply both sides by 2.
m^{2}+\left(-\frac{4}{\frac{1}{2}}\right)m=-\frac{8}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
m^{2}-8m=-\frac{8}{\frac{1}{2}}
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
m^{2}-8m=-16
Divide -8 by \frac{1}{2} by multiplying -8 by the reciprocal of \frac{1}{2}.
m^{2}-8m+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-8m+16=-16+16
Square -4.
m^{2}-8m+16=0
Add -16 to 16.
\left(m-4\right)^{2}=0
Factor m^{2}-8m+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-4\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
m-4=0 m-4=0
Simplify.
m=4 m=4
Add 4 to both sides of the equation.
m=4
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}