Solve for x (complex solution)
x=65+5\sqrt{7}i\approx 65+13.228756555i
x=-5\sqrt{7}i+65\approx 65-13.228756555i
Graph
Share
Copied to clipboard
\left(500-\left(10x-400\right)\right)\left(x-40\right)=8000
Use the distributive property to multiply x-40 by 10.
\left(500-10x-\left(-400\right)\right)\left(x-40\right)=8000
To find the opposite of 10x-400, find the opposite of each term.
\left(500-10x+400\right)\left(x-40\right)=8000
The opposite of -400 is 400.
\left(900-10x\right)\left(x-40\right)=8000
Add 500 and 400 to get 900.
900x-36000-10x^{2}+400x=8000
Apply the distributive property by multiplying each term of 900-10x by each term of x-40.
1300x-36000-10x^{2}=8000
Combine 900x and 400x to get 1300x.
1300x-36000-10x^{2}-8000=0
Subtract 8000 from both sides.
1300x-44000-10x^{2}=0
Subtract 8000 from -36000 to get -44000.
-10x^{2}+1300x-44000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1300±\sqrt{1300^{2}-4\left(-10\right)\left(-44000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1300 for b, and -44000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1300±\sqrt{1690000-4\left(-10\right)\left(-44000\right)}}{2\left(-10\right)}
Square 1300.
x=\frac{-1300±\sqrt{1690000+40\left(-44000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1300±\sqrt{1690000-1760000}}{2\left(-10\right)}
Multiply 40 times -44000.
x=\frac{-1300±\sqrt{-70000}}{2\left(-10\right)}
Add 1690000 to -1760000.
x=\frac{-1300±100\sqrt{7}i}{2\left(-10\right)}
Take the square root of -70000.
x=\frac{-1300±100\sqrt{7}i}{-20}
Multiply 2 times -10.
x=\frac{-1300+100\sqrt{7}i}{-20}
Now solve the equation x=\frac{-1300±100\sqrt{7}i}{-20} when ± is plus. Add -1300 to 100i\sqrt{7}.
x=-5\sqrt{7}i+65
Divide -1300+100i\sqrt{7} by -20.
x=\frac{-100\sqrt{7}i-1300}{-20}
Now solve the equation x=\frac{-1300±100\sqrt{7}i}{-20} when ± is minus. Subtract 100i\sqrt{7} from -1300.
x=65+5\sqrt{7}i
Divide -1300-100i\sqrt{7} by -20.
x=-5\sqrt{7}i+65 x=65+5\sqrt{7}i
The equation is now solved.
\left(500-\left(10x-400\right)\right)\left(x-40\right)=8000
Use the distributive property to multiply x-40 by 10.
\left(500-10x-\left(-400\right)\right)\left(x-40\right)=8000
To find the opposite of 10x-400, find the opposite of each term.
\left(500-10x+400\right)\left(x-40\right)=8000
The opposite of -400 is 400.
\left(900-10x\right)\left(x-40\right)=8000
Add 500 and 400 to get 900.
900x-36000-10x^{2}+400x=8000
Apply the distributive property by multiplying each term of 900-10x by each term of x-40.
1300x-36000-10x^{2}=8000
Combine 900x and 400x to get 1300x.
1300x-10x^{2}=8000+36000
Add 36000 to both sides.
1300x-10x^{2}=44000
Add 8000 and 36000 to get 44000.
-10x^{2}+1300x=44000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+1300x}{-10}=\frac{44000}{-10}
Divide both sides by -10.
x^{2}+\frac{1300}{-10}x=\frac{44000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-130x=\frac{44000}{-10}
Divide 1300 by -10.
x^{2}-130x=-4400
Divide 44000 by -10.
x^{2}-130x+\left(-65\right)^{2}=-4400+\left(-65\right)^{2}
Divide -130, the coefficient of the x term, by 2 to get -65. Then add the square of -65 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-130x+4225=-4400+4225
Square -65.
x^{2}-130x+4225=-175
Add -4400 to 4225.
\left(x-65\right)^{2}=-175
Factor x^{2}-130x+4225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-65\right)^{2}}=\sqrt{-175}
Take the square root of both sides of the equation.
x-65=5\sqrt{7}i x-65=-5\sqrt{7}i
Simplify.
x=65+5\sqrt{7}i x=-5\sqrt{7}i+65
Add 65 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}