Evaluate
-\left(\lambda -6\right)\left(\lambda -4\right)\left(\lambda +2\right)
Expand
-\lambda ^{3}+8\lambda ^{2}-4\lambda -48
Share
Copied to clipboard
\left(5-\lambda \right)\left(-10-5\lambda -\lambda \left(-2-\lambda \right)\right)+0+1\left(0+2+\lambda \right)
Use the distributive property to multiply 5 by -2-\lambda .
\left(5-\lambda \right)\left(-10-5\lambda -\left(-2\lambda -\lambda ^{2}\right)\right)+0+1\left(0+2+\lambda \right)
Use the distributive property to multiply \lambda by -2-\lambda .
\left(5-\lambda \right)\left(-10-5\lambda -\left(-2\lambda \right)-\left(-\lambda ^{2}\right)\right)+0+1\left(0+2+\lambda \right)
To find the opposite of -2\lambda -\lambda ^{2}, find the opposite of each term.
\left(5-\lambda \right)\left(-10-5\lambda +2\lambda -\left(-\lambda ^{2}\right)\right)+0+1\left(0+2+\lambda \right)
The opposite of -2\lambda is 2\lambda .
\left(5-\lambda \right)\left(-10-5\lambda +2\lambda +\lambda ^{2}\right)+0+1\left(0+2+\lambda \right)
The opposite of -\lambda ^{2} is \lambda ^{2}.
\left(5-\lambda \right)\left(-10-3\lambda +\lambda ^{2}\right)+0+1\left(0+2+\lambda \right)
Combine -5\lambda and 2\lambda to get -3\lambda .
-50-15\lambda +5\lambda ^{2}+10\lambda +3\lambda ^{2}-\lambda ^{3}+0+1\left(0+2+\lambda \right)
Apply the distributive property by multiplying each term of 5-\lambda by each term of -10-3\lambda +\lambda ^{2}.
-50-5\lambda +5\lambda ^{2}+3\lambda ^{2}-\lambda ^{3}+0+1\left(0+2+\lambda \right)
Combine -15\lambda and 10\lambda to get -5\lambda .
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+0+1\left(0+2+\lambda \right)
Combine 5\lambda ^{2} and 3\lambda ^{2} to get 8\lambda ^{2}.
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+1\left(0+2+\lambda \right)
Add -50 and 0 to get -50.
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+1\left(2+\lambda \right)
Add 0 and 2 to get 2.
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+2+\lambda
Use the distributive property to multiply 1 by 2+\lambda .
-48-5\lambda +8\lambda ^{2}-\lambda ^{3}+\lambda
Add -50 and 2 to get -48.
-48-4\lambda +8\lambda ^{2}-\lambda ^{3}
Combine -5\lambda and \lambda to get -4\lambda .
\left(5-\lambda \right)\left(-10-5\lambda -\lambda \left(-2-\lambda \right)\right)+0+1\left(0+2+\lambda \right)
Use the distributive property to multiply 5 by -2-\lambda .
\left(5-\lambda \right)\left(-10-5\lambda -\left(-2\lambda -\lambda ^{2}\right)\right)+0+1\left(0+2+\lambda \right)
Use the distributive property to multiply \lambda by -2-\lambda .
\left(5-\lambda \right)\left(-10-5\lambda -\left(-2\lambda \right)-\left(-\lambda ^{2}\right)\right)+0+1\left(0+2+\lambda \right)
To find the opposite of -2\lambda -\lambda ^{2}, find the opposite of each term.
\left(5-\lambda \right)\left(-10-5\lambda +2\lambda -\left(-\lambda ^{2}\right)\right)+0+1\left(0+2+\lambda \right)
The opposite of -2\lambda is 2\lambda .
\left(5-\lambda \right)\left(-10-5\lambda +2\lambda +\lambda ^{2}\right)+0+1\left(0+2+\lambda \right)
The opposite of -\lambda ^{2} is \lambda ^{2}.
\left(5-\lambda \right)\left(-10-3\lambda +\lambda ^{2}\right)+0+1\left(0+2+\lambda \right)
Combine -5\lambda and 2\lambda to get -3\lambda .
-50-15\lambda +5\lambda ^{2}+10\lambda +3\lambda ^{2}-\lambda ^{3}+0+1\left(0+2+\lambda \right)
Apply the distributive property by multiplying each term of 5-\lambda by each term of -10-3\lambda +\lambda ^{2}.
-50-5\lambda +5\lambda ^{2}+3\lambda ^{2}-\lambda ^{3}+0+1\left(0+2+\lambda \right)
Combine -15\lambda and 10\lambda to get -5\lambda .
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+0+1\left(0+2+\lambda \right)
Combine 5\lambda ^{2} and 3\lambda ^{2} to get 8\lambda ^{2}.
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+1\left(0+2+\lambda \right)
Add -50 and 0 to get -50.
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+1\left(2+\lambda \right)
Add 0 and 2 to get 2.
-50-5\lambda +8\lambda ^{2}-\lambda ^{3}+2+\lambda
Use the distributive property to multiply 1 by 2+\lambda .
-48-5\lambda +8\lambda ^{2}-\lambda ^{3}+\lambda
Add -50 and 2 to get -48.
-48-4\lambda +8\lambda ^{2}-\lambda ^{3}
Combine -5\lambda and \lambda to get -4\lambda .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}