Evaluate
\frac{77}{156}\approx 0.493589744
Factor
\frac{7 \cdot 11}{2 ^ {2} \cdot 3 \cdot 13} = 0.4935897435897436
Share
Copied to clipboard
\frac{\left(\frac{180+7}{36}-\frac{4\times 18+1}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Multiply 5 and 36 to get 180.
\frac{\left(\frac{187}{36}-\frac{4\times 18+1}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Add 180 and 7 to get 187.
\frac{\left(\frac{187}{36}-\frac{72+1}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Multiply 4 and 18 to get 72.
\frac{\left(\frac{187}{36}-\frac{73}{18}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Add 72 and 1 to get 73.
\frac{\left(\frac{187}{36}-\frac{146}{36}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Least common multiple of 36 and 18 is 36. Convert \frac{187}{36} and \frac{73}{18} to fractions with denominator 36.
\frac{\left(\frac{187-146}{36}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Since \frac{187}{36} and \frac{146}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{41}{36}+\frac{1\times 72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Subtract 146 from 187 to get 41.
\frac{\left(\frac{41}{36}+\frac{72+1}{72}\right)\times 36}{78}-\frac{1}{2}
Multiply 1 and 72 to get 72.
\frac{\left(\frac{41}{36}+\frac{73}{72}\right)\times 36}{78}-\frac{1}{2}
Add 72 and 1 to get 73.
\frac{\left(\frac{82}{72}+\frac{73}{72}\right)\times 36}{78}-\frac{1}{2}
Least common multiple of 36 and 72 is 72. Convert \frac{41}{36} and \frac{73}{72} to fractions with denominator 72.
\frac{\frac{82+73}{72}\times 36}{78}-\frac{1}{2}
Since \frac{82}{72} and \frac{73}{72} have the same denominator, add them by adding their numerators.
\frac{\frac{155}{72}\times 36}{78}-\frac{1}{2}
Add 82 and 73 to get 155.
\frac{\frac{155\times 36}{72}}{78}-\frac{1}{2}
Express \frac{155}{72}\times 36 as a single fraction.
\frac{\frac{5580}{72}}{78}-\frac{1}{2}
Multiply 155 and 36 to get 5580.
\frac{\frac{155}{2}}{78}-\frac{1}{2}
Reduce the fraction \frac{5580}{72} to lowest terms by extracting and canceling out 36.
\frac{155}{2\times 78}-\frac{1}{2}
Express \frac{\frac{155}{2}}{78} as a single fraction.
\frac{155}{156}-\frac{1}{2}
Multiply 2 and 78 to get 156.
\frac{155}{156}-\frac{78}{156}
Least common multiple of 156 and 2 is 156. Convert \frac{155}{156} and \frac{1}{2} to fractions with denominator 156.
\frac{155-78}{156}
Since \frac{155}{156} and \frac{78}{156} have the same denominator, subtract them by subtracting their numerators.
\frac{77}{156}
Subtract 78 from 155 to get 77.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}