Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3600x-160x^{2}-20000=8000
Use the distributive property to multiply 4x-40 by 500-40x and combine like terms.
3600x-160x^{2}-20000-8000=0
Subtract 8000 from both sides.
3600x-160x^{2}-28000=0
Subtract 8000 from -20000 to get -28000.
-160x^{2}+3600x-28000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3600±\sqrt{3600^{2}-4\left(-160\right)\left(-28000\right)}}{2\left(-160\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -160 for a, 3600 for b, and -28000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3600±\sqrt{12960000-4\left(-160\right)\left(-28000\right)}}{2\left(-160\right)}
Square 3600.
x=\frac{-3600±\sqrt{12960000+640\left(-28000\right)}}{2\left(-160\right)}
Multiply -4 times -160.
x=\frac{-3600±\sqrt{12960000-17920000}}{2\left(-160\right)}
Multiply 640 times -28000.
x=\frac{-3600±\sqrt{-4960000}}{2\left(-160\right)}
Add 12960000 to -17920000.
x=\frac{-3600±400\sqrt{31}i}{2\left(-160\right)}
Take the square root of -4960000.
x=\frac{-3600±400\sqrt{31}i}{-320}
Multiply 2 times -160.
x=\frac{-3600+400\sqrt{31}i}{-320}
Now solve the equation x=\frac{-3600±400\sqrt{31}i}{-320} when ± is plus. Add -3600 to 400i\sqrt{31}.
x=\frac{-5\sqrt{31}i+45}{4}
Divide -3600+400i\sqrt{31} by -320.
x=\frac{-400\sqrt{31}i-3600}{-320}
Now solve the equation x=\frac{-3600±400\sqrt{31}i}{-320} when ± is minus. Subtract 400i\sqrt{31} from -3600.
x=\frac{45+5\sqrt{31}i}{4}
Divide -3600-400i\sqrt{31} by -320.
x=\frac{-5\sqrt{31}i+45}{4} x=\frac{45+5\sqrt{31}i}{4}
The equation is now solved.
3600x-160x^{2}-20000=8000
Use the distributive property to multiply 4x-40 by 500-40x and combine like terms.
3600x-160x^{2}=8000+20000
Add 20000 to both sides.
3600x-160x^{2}=28000
Add 8000 and 20000 to get 28000.
-160x^{2}+3600x=28000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-160x^{2}+3600x}{-160}=\frac{28000}{-160}
Divide both sides by -160.
x^{2}+\frac{3600}{-160}x=\frac{28000}{-160}
Dividing by -160 undoes the multiplication by -160.
x^{2}-\frac{45}{2}x=\frac{28000}{-160}
Reduce the fraction \frac{3600}{-160} to lowest terms by extracting and canceling out 80.
x^{2}-\frac{45}{2}x=-175
Divide 28000 by -160.
x^{2}-\frac{45}{2}x+\left(-\frac{45}{4}\right)^{2}=-175+\left(-\frac{45}{4}\right)^{2}
Divide -\frac{45}{2}, the coefficient of the x term, by 2 to get -\frac{45}{4}. Then add the square of -\frac{45}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{45}{2}x+\frac{2025}{16}=-175+\frac{2025}{16}
Square -\frac{45}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{45}{2}x+\frac{2025}{16}=-\frac{775}{16}
Add -175 to \frac{2025}{16}.
\left(x-\frac{45}{4}\right)^{2}=-\frac{775}{16}
Factor x^{2}-\frac{45}{2}x+\frac{2025}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{4}\right)^{2}}=\sqrt{-\frac{775}{16}}
Take the square root of both sides of the equation.
x-\frac{45}{4}=\frac{5\sqrt{31}i}{4} x-\frac{45}{4}=-\frac{5\sqrt{31}i}{4}
Simplify.
x=\frac{45+5\sqrt{31}i}{4} x=\frac{-5\sqrt{31}i+45}{4}
Add \frac{45}{4} to both sides of the equation.