Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+8x-3=21
Use the distributive property to multiply 4x+3 by 4x-1 and combine like terms.
16x^{2}+8x-3-21=0
Subtract 21 from both sides.
16x^{2}+8x-24=0
Subtract 21 from -3 to get -24.
x=\frac{-8±\sqrt{8^{2}-4\times 16\left(-24\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 8 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16\left(-24\right)}}{2\times 16}
Square 8.
x=\frac{-8±\sqrt{64-64\left(-24\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-8±\sqrt{64+1536}}{2\times 16}
Multiply -64 times -24.
x=\frac{-8±\sqrt{1600}}{2\times 16}
Add 64 to 1536.
x=\frac{-8±40}{2\times 16}
Take the square root of 1600.
x=\frac{-8±40}{32}
Multiply 2 times 16.
x=\frac{32}{32}
Now solve the equation x=\frac{-8±40}{32} when ± is plus. Add -8 to 40.
x=1
Divide 32 by 32.
x=-\frac{48}{32}
Now solve the equation x=\frac{-8±40}{32} when ± is minus. Subtract 40 from -8.
x=-\frac{3}{2}
Reduce the fraction \frac{-48}{32} to lowest terms by extracting and canceling out 16.
x=1 x=-\frac{3}{2}
The equation is now solved.
16x^{2}+8x-3=21
Use the distributive property to multiply 4x+3 by 4x-1 and combine like terms.
16x^{2}+8x=21+3
Add 3 to both sides.
16x^{2}+8x=24
Add 21 and 3 to get 24.
\frac{16x^{2}+8x}{16}=\frac{24}{16}
Divide both sides by 16.
x^{2}+\frac{8}{16}x=\frac{24}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{1}{2}x=\frac{24}{16}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{1}{2}x=\frac{3}{2}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
Add \frac{3}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{5}{4} x+\frac{1}{4}=-\frac{5}{4}
Simplify.
x=1 x=-\frac{3}{2}
Subtract \frac{1}{4} from both sides of the equation.