Solve for x
x = \frac{\sqrt{1441} + 39}{2} \approx 38.480252896
x=\frac{39-\sqrt{1441}}{2}\approx 0.519747104
Graph
Share
Copied to clipboard
800+780x-20x^{2}=1200
Use the distributive property to multiply 40-x by 20+20x and combine like terms.
800+780x-20x^{2}-1200=0
Subtract 1200 from both sides.
-400+780x-20x^{2}=0
Subtract 1200 from 800 to get -400.
-20x^{2}+780x-400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-780±\sqrt{780^{2}-4\left(-20\right)\left(-400\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 780 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-780±\sqrt{608400-4\left(-20\right)\left(-400\right)}}{2\left(-20\right)}
Square 780.
x=\frac{-780±\sqrt{608400+80\left(-400\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-780±\sqrt{608400-32000}}{2\left(-20\right)}
Multiply 80 times -400.
x=\frac{-780±\sqrt{576400}}{2\left(-20\right)}
Add 608400 to -32000.
x=\frac{-780±20\sqrt{1441}}{2\left(-20\right)}
Take the square root of 576400.
x=\frac{-780±20\sqrt{1441}}{-40}
Multiply 2 times -20.
x=\frac{20\sqrt{1441}-780}{-40}
Now solve the equation x=\frac{-780±20\sqrt{1441}}{-40} when ± is plus. Add -780 to 20\sqrt{1441}.
x=\frac{39-\sqrt{1441}}{2}
Divide -780+20\sqrt{1441} by -40.
x=\frac{-20\sqrt{1441}-780}{-40}
Now solve the equation x=\frac{-780±20\sqrt{1441}}{-40} when ± is minus. Subtract 20\sqrt{1441} from -780.
x=\frac{\sqrt{1441}+39}{2}
Divide -780-20\sqrt{1441} by -40.
x=\frac{39-\sqrt{1441}}{2} x=\frac{\sqrt{1441}+39}{2}
The equation is now solved.
800+780x-20x^{2}=1200
Use the distributive property to multiply 40-x by 20+20x and combine like terms.
780x-20x^{2}=1200-800
Subtract 800 from both sides.
780x-20x^{2}=400
Subtract 800 from 1200 to get 400.
-20x^{2}+780x=400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+780x}{-20}=\frac{400}{-20}
Divide both sides by -20.
x^{2}+\frac{780}{-20}x=\frac{400}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-39x=\frac{400}{-20}
Divide 780 by -20.
x^{2}-39x=-20
Divide 400 by -20.
x^{2}-39x+\left(-\frac{39}{2}\right)^{2}=-20+\left(-\frac{39}{2}\right)^{2}
Divide -39, the coefficient of the x term, by 2 to get -\frac{39}{2}. Then add the square of -\frac{39}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-39x+\frac{1521}{4}=-20+\frac{1521}{4}
Square -\frac{39}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-39x+\frac{1521}{4}=\frac{1441}{4}
Add -20 to \frac{1521}{4}.
\left(x-\frac{39}{2}\right)^{2}=\frac{1441}{4}
Factor x^{2}-39x+\frac{1521}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{2}\right)^{2}}=\sqrt{\frac{1441}{4}}
Take the square root of both sides of the equation.
x-\frac{39}{2}=\frac{\sqrt{1441}}{2} x-\frac{39}{2}=-\frac{\sqrt{1441}}{2}
Simplify.
x=\frac{\sqrt{1441}+39}{2} x=\frac{39-\sqrt{1441}}{2}
Add \frac{39}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}