Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
12x-9x^{2}-4-2x+1=9\left(2x-x^{2}\right)+4\left(x+3\right)
Use the distributive property to multiply 3x-2 by 2-3x and combine like terms.
10x-9x^{2}-4+1=9\left(2x-x^{2}\right)+4\left(x+3\right)
Combine 12x and -2x to get 10x.
10x-9x^{2}-3=9\left(2x-x^{2}\right)+4\left(x+3\right)
Add -4 and 1 to get -3.
10x-9x^{2}-3=18x-9x^{2}+4\left(x+3\right)
Use the distributive property to multiply 9 by 2x-x^{2}.
10x-9x^{2}-3=18x-9x^{2}+4x+12
Use the distributive property to multiply 4 by x+3.
10x-9x^{2}-3=22x-9x^{2}+12
Combine 18x and 4x to get 22x.
10x-9x^{2}-3-22x=-9x^{2}+12
Subtract 22x from both sides.
-12x-9x^{2}-3=-9x^{2}+12
Combine 10x and -22x to get -12x.
-12x-9x^{2}-3+9x^{2}=12
Add 9x^{2} to both sides.
-12x-3=12
Combine -9x^{2} and 9x^{2} to get 0.
-12x=12+3
Add 3 to both sides.
-12x=15
Add 12 and 3 to get 15.
x=\frac{15}{-12}
Divide both sides by -12.
x=-\frac{5}{4}
Reduce the fraction \frac{15}{-12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}