Solve for x
x = -\frac{26}{11} = -2\frac{4}{11} \approx -2.363636364
x=5
Graph
Share
Copied to clipboard
15x^{2}-x-28=\left(2x+7\right)^{2}+53
Use the distributive property to multiply 3x+4 by 5x-7 and combine like terms.
15x^{2}-x-28=4x^{2}+28x+49+53
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
15x^{2}-x-28=4x^{2}+28x+102
Add 49 and 53 to get 102.
15x^{2}-x-28-4x^{2}=28x+102
Subtract 4x^{2} from both sides.
11x^{2}-x-28=28x+102
Combine 15x^{2} and -4x^{2} to get 11x^{2}.
11x^{2}-x-28-28x=102
Subtract 28x from both sides.
11x^{2}-29x-28=102
Combine -x and -28x to get -29x.
11x^{2}-29x-28-102=0
Subtract 102 from both sides.
11x^{2}-29x-130=0
Subtract 102 from -28 to get -130.
a+b=-29 ab=11\left(-130\right)=-1430
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 11x^{2}+ax+bx-130. To find a and b, set up a system to be solved.
1,-1430 2,-715 5,-286 10,-143 11,-130 13,-110 22,-65 26,-55
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1430.
1-1430=-1429 2-715=-713 5-286=-281 10-143=-133 11-130=-119 13-110=-97 22-65=-43 26-55=-29
Calculate the sum for each pair.
a=-55 b=26
The solution is the pair that gives sum -29.
\left(11x^{2}-55x\right)+\left(26x-130\right)
Rewrite 11x^{2}-29x-130 as \left(11x^{2}-55x\right)+\left(26x-130\right).
11x\left(x-5\right)+26\left(x-5\right)
Factor out 11x in the first and 26 in the second group.
\left(x-5\right)\left(11x+26\right)
Factor out common term x-5 by using distributive property.
x=5 x=-\frac{26}{11}
To find equation solutions, solve x-5=0 and 11x+26=0.
15x^{2}-x-28=\left(2x+7\right)^{2}+53
Use the distributive property to multiply 3x+4 by 5x-7 and combine like terms.
15x^{2}-x-28=4x^{2}+28x+49+53
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
15x^{2}-x-28=4x^{2}+28x+102
Add 49 and 53 to get 102.
15x^{2}-x-28-4x^{2}=28x+102
Subtract 4x^{2} from both sides.
11x^{2}-x-28=28x+102
Combine 15x^{2} and -4x^{2} to get 11x^{2}.
11x^{2}-x-28-28x=102
Subtract 28x from both sides.
11x^{2}-29x-28=102
Combine -x and -28x to get -29x.
11x^{2}-29x-28-102=0
Subtract 102 from both sides.
11x^{2}-29x-130=0
Subtract 102 from -28 to get -130.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 11\left(-130\right)}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, -29 for b, and -130 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\times 11\left(-130\right)}}{2\times 11}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841-44\left(-130\right)}}{2\times 11}
Multiply -4 times 11.
x=\frac{-\left(-29\right)±\sqrt{841+5720}}{2\times 11}
Multiply -44 times -130.
x=\frac{-\left(-29\right)±\sqrt{6561}}{2\times 11}
Add 841 to 5720.
x=\frac{-\left(-29\right)±81}{2\times 11}
Take the square root of 6561.
x=\frac{29±81}{2\times 11}
The opposite of -29 is 29.
x=\frac{29±81}{22}
Multiply 2 times 11.
x=\frac{110}{22}
Now solve the equation x=\frac{29±81}{22} when ± is plus. Add 29 to 81.
x=5
Divide 110 by 22.
x=-\frac{52}{22}
Now solve the equation x=\frac{29±81}{22} when ± is minus. Subtract 81 from 29.
x=-\frac{26}{11}
Reduce the fraction \frac{-52}{22} to lowest terms by extracting and canceling out 2.
x=5 x=-\frac{26}{11}
The equation is now solved.
15x^{2}-x-28=\left(2x+7\right)^{2}+53
Use the distributive property to multiply 3x+4 by 5x-7 and combine like terms.
15x^{2}-x-28=4x^{2}+28x+49+53
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+7\right)^{2}.
15x^{2}-x-28=4x^{2}+28x+102
Add 49 and 53 to get 102.
15x^{2}-x-28-4x^{2}=28x+102
Subtract 4x^{2} from both sides.
11x^{2}-x-28=28x+102
Combine 15x^{2} and -4x^{2} to get 11x^{2}.
11x^{2}-x-28-28x=102
Subtract 28x from both sides.
11x^{2}-29x-28=102
Combine -x and -28x to get -29x.
11x^{2}-29x=102+28
Add 28 to both sides.
11x^{2}-29x=130
Add 102 and 28 to get 130.
\frac{11x^{2}-29x}{11}=\frac{130}{11}
Divide both sides by 11.
x^{2}-\frac{29}{11}x=\frac{130}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}-\frac{29}{11}x+\left(-\frac{29}{22}\right)^{2}=\frac{130}{11}+\left(-\frac{29}{22}\right)^{2}
Divide -\frac{29}{11}, the coefficient of the x term, by 2 to get -\frac{29}{22}. Then add the square of -\frac{29}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{11}x+\frac{841}{484}=\frac{130}{11}+\frac{841}{484}
Square -\frac{29}{22} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{11}x+\frac{841}{484}=\frac{6561}{484}
Add \frac{130}{11} to \frac{841}{484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{29}{22}\right)^{2}=\frac{6561}{484}
Factor x^{2}-\frac{29}{11}x+\frac{841}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{22}\right)^{2}}=\sqrt{\frac{6561}{484}}
Take the square root of both sides of the equation.
x-\frac{29}{22}=\frac{81}{22} x-\frac{29}{22}=-\frac{81}{22}
Simplify.
x=5 x=-\frac{26}{11}
Add \frac{29}{22} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}