Solve for b
b=\frac{5}{\left(m-1\right)^{2}}
m\neq 1
Solve for m
m=1-\sqrt{\frac{5}{b}}
m=1+\sqrt{\frac{5}{b}}\text{, }b>0
Share
Copied to clipboard
b\left(1-m\right)^{2}=5
Combine 3b and -2b to get b.
b\left(1-2m+m^{2}\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-m\right)^{2}.
b-2bm+bm^{2}=5
Use the distributive property to multiply b by 1-2m+m^{2}.
\left(1-2m+m^{2}\right)b=5
Combine all terms containing b.
\left(m^{2}-2m+1\right)b=5
The equation is in standard form.
\frac{\left(m^{2}-2m+1\right)b}{m^{2}-2m+1}=\frac{5}{m^{2}-2m+1}
Divide both sides by m^{2}-2m+1.
b=\frac{5}{m^{2}-2m+1}
Dividing by m^{2}-2m+1 undoes the multiplication by m^{2}-2m+1.
b=\frac{5}{\left(m-1\right)^{2}}
Divide 5 by m^{2}-2m+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}