Solve for b
b=\frac{36m^{2}-72m+31}{2\left(m-1\right)^{2}}
m\neq 1
Solve for m
m=\frac{\sqrt{\frac{10}{18-b}}\left(\sqrt{10\left(18-b\right)}-5\right)}{10}
m=\frac{\sqrt{\frac{10}{18-b}}\left(\sqrt{10\left(18-b\right)}+5\right)}{10}\text{, }b<18
Share
Copied to clipboard
\left(36-2b\right)\left(1-2m+m^{2}\right)=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-m\right)^{2}.
36-72m+36m^{2}-2b+4bm-2bm^{2}=5
Use the distributive property to multiply 36-2b by 1-2m+m^{2}.
-72m+36m^{2}-2b+4bm-2bm^{2}=5-36
Subtract 36 from both sides.
-72m+36m^{2}-2b+4bm-2bm^{2}=-31
Subtract 36 from 5 to get -31.
36m^{2}-2b+4bm-2bm^{2}=-31+72m
Add 72m to both sides.
-2b+4bm-2bm^{2}=-31+72m-36m^{2}
Subtract 36m^{2} from both sides.
\left(-2+4m-2m^{2}\right)b=-31+72m-36m^{2}
Combine all terms containing b.
\left(-2m^{2}+4m-2\right)b=-36m^{2}+72m-31
The equation is in standard form.
\frac{\left(-2m^{2}+4m-2\right)b}{-2m^{2}+4m-2}=\frac{-36m^{2}+72m-31}{-2m^{2}+4m-2}
Divide both sides by -2m^{2}+4m-2.
b=\frac{-36m^{2}+72m-31}{-2m^{2}+4m-2}
Dividing by -2m^{2}+4m-2 undoes the multiplication by -2m^{2}+4m-2.
b=-\frac{-36m^{2}+72m-31}{2\left(m-1\right)^{2}}
Divide -31+72m-36m^{2} by -2m^{2}+4m-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}