Evaluate
\frac{\left(t-144\right)\left(t-104\right)}{8}
Expand
\frac{t^{2}}{8}-31t+1872
Share
Copied to clipboard
36\left(-\frac{1}{2}\right)t+1872-\frac{1}{4}t\left(-\frac{1}{2}\right)t-\frac{1}{4}t\times 52
Apply the distributive property by multiplying each term of 36-\frac{1}{4}t by each term of -\frac{1}{2}t+52.
36\left(-\frac{1}{2}\right)t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Multiply t and t to get t^{2}.
\frac{36\left(-1\right)}{2}t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Express 36\left(-\frac{1}{2}\right) as a single fraction.
\frac{-36}{2}t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Multiply 36 and -1 to get -36.
-18t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Divide -36 by 2 to get -18.
-18t+1872+\frac{-\left(-1\right)}{4\times 2}t^{2}-\frac{1}{4}t\times 52
Multiply -\frac{1}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-18t+1872+\frac{1}{8}t^{2}-\frac{1}{4}t\times 52
Do the multiplications in the fraction \frac{-\left(-1\right)}{4\times 2}.
-18t+1872+\frac{1}{8}t^{2}+\frac{-52}{4}t
Express -\frac{1}{4}\times 52 as a single fraction.
-18t+1872+\frac{1}{8}t^{2}-13t
Divide -52 by 4 to get -13.
-31t+1872+\frac{1}{8}t^{2}
Combine -18t and -13t to get -31t.
36\left(-\frac{1}{2}\right)t+1872-\frac{1}{4}t\left(-\frac{1}{2}\right)t-\frac{1}{4}t\times 52
Apply the distributive property by multiplying each term of 36-\frac{1}{4}t by each term of -\frac{1}{2}t+52.
36\left(-\frac{1}{2}\right)t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Multiply t and t to get t^{2}.
\frac{36\left(-1\right)}{2}t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Express 36\left(-\frac{1}{2}\right) as a single fraction.
\frac{-36}{2}t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Multiply 36 and -1 to get -36.
-18t+1872-\frac{1}{4}t^{2}\left(-\frac{1}{2}\right)-\frac{1}{4}t\times 52
Divide -36 by 2 to get -18.
-18t+1872+\frac{-\left(-1\right)}{4\times 2}t^{2}-\frac{1}{4}t\times 52
Multiply -\frac{1}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-18t+1872+\frac{1}{8}t^{2}-\frac{1}{4}t\times 52
Do the multiplications in the fraction \frac{-\left(-1\right)}{4\times 2}.
-18t+1872+\frac{1}{8}t^{2}+\frac{-52}{4}t
Express -\frac{1}{4}\times 52 as a single fraction.
-18t+1872+\frac{1}{8}t^{2}-13t
Divide -52 by 4 to get -13.
-31t+1872+\frac{1}{8}t^{2}
Combine -18t and -13t to get -31t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}