Solve for x
x=-1
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-\sqrt{12}x\right)+\left(x-2\right)^{2}\left(x+2\right)=-13x+15
Use the distributive property to multiply 3-x by x^{2}+3x+9 and combine like terms.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+\left(x-2\right)^{2}\left(x+2\right)=-13x+15
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+\left(x^{2}-4x+4\right)\left(x+2\right)=-13x+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+x^{3}-2x^{2}-4x+8=-13x+15
Use the distributive property to multiply x^{2}-4x+4 by x+2 and combine like terms.
27+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x+8=-13x+15
Combine -x^{3} and x^{3} to get 0.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x=-13x+15
Add 27 and 8 to get 35.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x+13x=15
Add 13x to both sides.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=15
Combine -4x and 13x to get 9x.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x-15=0
Subtract 15 from both sides.
20+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=0
Subtract 15 from 35 to get 20.
20+x\left(\sqrt{3}\right)^{2}-2\left(\sqrt{3}\right)^{2}x^{2}-2x^{2}+9x=0
Use the distributive property to multiply \sqrt{3}x by \sqrt{3}-2\sqrt{3}x.
20+x\times 3-2\left(\sqrt{3}\right)^{2}x^{2}-2x^{2}+9x=0
The square of \sqrt{3} is 3.
20+x\times 3-2\times 3x^{2}-2x^{2}+9x=0
The square of \sqrt{3} is 3.
20+x\times 3-6x^{2}-2x^{2}+9x=0
Multiply -2 and 3 to get -6.
20+x\times 3-8x^{2}+9x=0
Combine -6x^{2} and -2x^{2} to get -8x^{2}.
20+12x-8x^{2}=0
Combine x\times 3 and 9x to get 12x.
5+3x-2x^{2}=0
Divide both sides by 4.
-2x^{2}+3x+5=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=-2\times 5=-10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=5 b=-2
The solution is the pair that gives sum 3.
\left(-2x^{2}+5x\right)+\left(-2x+5\right)
Rewrite -2x^{2}+3x+5 as \left(-2x^{2}+5x\right)+\left(-2x+5\right).
-x\left(2x-5\right)-\left(2x-5\right)
Factor out -x in the first and -1 in the second group.
\left(2x-5\right)\left(-x-1\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=-1
To find equation solutions, solve 2x-5=0 and -x-1=0.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-\sqrt{12}x\right)+\left(x-2\right)^{2}\left(x+2\right)=-13x+15
Use the distributive property to multiply 3-x by x^{2}+3x+9 and combine like terms.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+\left(x-2\right)^{2}\left(x+2\right)=-13x+15
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+\left(x^{2}-4x+4\right)\left(x+2\right)=-13x+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+x^{3}-2x^{2}-4x+8=-13x+15
Use the distributive property to multiply x^{2}-4x+4 by x+2 and combine like terms.
27+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x+8=-13x+15
Combine -x^{3} and x^{3} to get 0.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x=-13x+15
Add 27 and 8 to get 35.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x+13x=15
Add 13x to both sides.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=15
Combine -4x and 13x to get 9x.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x-15=0
Subtract 15 from both sides.
20+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=0
Subtract 15 from 35 to get 20.
20+x\left(\sqrt{3}\right)^{2}-2\left(\sqrt{3}\right)^{2}x^{2}-2x^{2}+9x=0
Use the distributive property to multiply \sqrt{3}x by \sqrt{3}-2\sqrt{3}x.
20+x\times 3-2\left(\sqrt{3}\right)^{2}x^{2}-2x^{2}+9x=0
The square of \sqrt{3} is 3.
20+x\times 3-2\times 3x^{2}-2x^{2}+9x=0
The square of \sqrt{3} is 3.
20+x\times 3-6x^{2}-2x^{2}+9x=0
Multiply -2 and 3 to get -6.
20+x\times 3-8x^{2}+9x=0
Combine -6x^{2} and -2x^{2} to get -8x^{2}.
20+12x-8x^{2}=0
Combine x\times 3 and 9x to get 12x.
-8x^{2}+12x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-8\right)\times 20}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 12 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-8\right)\times 20}}{2\left(-8\right)}
Square 12.
x=\frac{-12±\sqrt{144+32\times 20}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-12±\sqrt{144+640}}{2\left(-8\right)}
Multiply 32 times 20.
x=\frac{-12±\sqrt{784}}{2\left(-8\right)}
Add 144 to 640.
x=\frac{-12±28}{2\left(-8\right)}
Take the square root of 784.
x=\frac{-12±28}{-16}
Multiply 2 times -8.
x=\frac{16}{-16}
Now solve the equation x=\frac{-12±28}{-16} when ± is plus. Add -12 to 28.
x=-1
Divide 16 by -16.
x=-\frac{40}{-16}
Now solve the equation x=\frac{-12±28}{-16} when ± is minus. Subtract 28 from -12.
x=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
x=-1 x=\frac{5}{2}
The equation is now solved.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-\sqrt{12}x\right)+\left(x-2\right)^{2}\left(x+2\right)=-13x+15
Use the distributive property to multiply 3-x by x^{2}+3x+9 and combine like terms.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+\left(x-2\right)^{2}\left(x+2\right)=-13x+15
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+\left(x^{2}-4x+4\right)\left(x+2\right)=-13x+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
27-x^{3}+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)+x^{3}-2x^{2}-4x+8=-13x+15
Use the distributive property to multiply x^{2}-4x+4 by x+2 and combine like terms.
27+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x+8=-13x+15
Combine -x^{3} and x^{3} to get 0.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x=-13x+15
Add 27 and 8 to get 35.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}-4x+13x=15
Add 13x to both sides.
35+\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=15
Combine -4x and 13x to get 9x.
\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=15-35
Subtract 35 from both sides.
\sqrt{3}x\left(\sqrt{3}-2\sqrt{3}x\right)-2x^{2}+9x=-20
Subtract 35 from 15 to get -20.
x\left(\sqrt{3}\right)^{2}-2\left(\sqrt{3}\right)^{2}x^{2}-2x^{2}+9x=-20
Use the distributive property to multiply \sqrt{3}x by \sqrt{3}-2\sqrt{3}x.
x\times 3-2\left(\sqrt{3}\right)^{2}x^{2}-2x^{2}+9x=-20
The square of \sqrt{3} is 3.
x\times 3-2\times 3x^{2}-2x^{2}+9x=-20
The square of \sqrt{3} is 3.
x\times 3-6x^{2}-2x^{2}+9x=-20
Multiply -2 and 3 to get -6.
x\times 3-8x^{2}+9x=-20
Combine -6x^{2} and -2x^{2} to get -8x^{2}.
12x-8x^{2}=-20
Combine x\times 3 and 9x to get 12x.
-8x^{2}+12x=-20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+12x}{-8}=-\frac{20}{-8}
Divide both sides by -8.
x^{2}+\frac{12}{-8}x=-\frac{20}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{3}{2}x=-\frac{20}{-8}
Reduce the fraction \frac{12}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{2}x=\frac{5}{2}
Reduce the fraction \frac{-20}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Add \frac{5}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Simplify.
x=\frac{5}{2} x=-1
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}