Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(3-\sqrt{3}\right)\left(1+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(3-\sqrt{3}\right)\left(1+\frac{\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\left(3-\sqrt{3}\right)\left(\frac{3}{3}+\frac{\sqrt{3}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\left(3-\sqrt{3}\right)\times \frac{3+\sqrt{3}}{3}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{3}
Express \left(3-\sqrt{3}\right)\times \frac{3+\sqrt{3}}{3} as a single fraction.
\frac{3^{2}-\left(\sqrt{3}\right)^{2}}{3}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9-\left(\sqrt{3}\right)^{2}}{3}
Calculate 3 to the power of 2 and get 9.
\frac{9-3}{3}
The square of \sqrt{3} is 3.
\frac{6}{3}
Subtract 3 from 9 to get 6.
2
Divide 6 by 3 to get 2.