Evaluate
245
Factor
5\times 7^{2}
Share
Copied to clipboard
\left(3\sqrt{5}-4\sqrt{5}+4\sqrt{20}\right)\sqrt{245}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\left(-\sqrt{5}+4\sqrt{20}\right)\sqrt{245}
Combine 3\sqrt{5} and -4\sqrt{5} to get -\sqrt{5}.
\left(-\sqrt{5}+4\times 2\sqrt{5}\right)\sqrt{245}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(-\sqrt{5}+8\sqrt{5}\right)\sqrt{245}
Multiply 4 and 2 to get 8.
7\sqrt{5}\sqrt{245}
Combine -\sqrt{5} and 8\sqrt{5} to get 7\sqrt{5}.
7\sqrt{5}\times 7\sqrt{5}
Factor 245=7^{2}\times 5. Rewrite the square root of the product \sqrt{7^{2}\times 5} as the product of square roots \sqrt{7^{2}}\sqrt{5}. Take the square root of 7^{2}.
49\sqrt{5}\sqrt{5}
Multiply 7 and 7 to get 49.
49\times 5
Multiply \sqrt{5} and \sqrt{5} to get 5.
245
Multiply 49 and 5 to get 245.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}