Evaluate
\frac{31}{4}=7.75
Factor
\frac{31}{2 ^ {2}} = 7\frac{3}{4} = 7.75
Share
Copied to clipboard
\left(3\times 2\sqrt{5}-\sqrt{45}+2\sqrt{80}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(6\sqrt{5}-\sqrt{45}+2\sqrt{80}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Multiply 3 and 2 to get 6.
\left(6\sqrt{5}-3\sqrt{5}+2\sqrt{80}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\left(3\sqrt{5}+2\sqrt{80}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Combine 6\sqrt{5} and -3\sqrt{5} to get 3\sqrt{5}.
\left(3\sqrt{5}+2\times 4\sqrt{5}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\left(3\sqrt{5}+8\sqrt{5}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Multiply 2 and 4 to get 8.
\left(11\sqrt{5}+4\sqrt{125}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Combine 3\sqrt{5} and 8\sqrt{5} to get 11\sqrt{5}.
\left(11\sqrt{5}+4\times 5\sqrt{5}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\left(11\sqrt{5}+20\sqrt{5}\right)\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Multiply 4 and 5 to get 20.
31\sqrt{5}\left(3\sqrt{180}-2\sqrt{245}\right)^{-1}
Combine 11\sqrt{5} and 20\sqrt{5} to get 31\sqrt{5}.
31\sqrt{5}\left(3\times 6\sqrt{5}-2\sqrt{245}\right)^{-1}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
31\sqrt{5}\left(18\sqrt{5}-2\sqrt{245}\right)^{-1}
Multiply 3 and 6 to get 18.
31\sqrt{5}\left(18\sqrt{5}-2\times 7\sqrt{5}\right)^{-1}
Factor 245=7^{2}\times 5. Rewrite the square root of the product \sqrt{7^{2}\times 5} as the product of square roots \sqrt{7^{2}}\sqrt{5}. Take the square root of 7^{2}.
31\sqrt{5}\left(18\sqrt{5}-14\sqrt{5}\right)^{-1}
Multiply -2 and 7 to get -14.
31\sqrt{5}\times \left(4\sqrt{5}\right)^{-1}
Combine 18\sqrt{5} and -14\sqrt{5} to get 4\sqrt{5}.
31\sqrt{5}\times 4^{-1}\left(\sqrt{5}\right)^{-1}
Expand \left(4\sqrt{5}\right)^{-1}.
31\sqrt{5}\times \frac{1}{4}\left(\sqrt{5}\right)^{-1}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{31}{4}\sqrt{5}\left(\sqrt{5}\right)^{-1}
Multiply 31 and \frac{1}{4} to get \frac{31}{4}.
\frac{31}{4}
Multiply \sqrt{5} and \left(\sqrt{5}\right)^{-1} to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}