Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

-27\lambda +18\lambda ^{2}-18+\left(2\lambda +1\right)\left(2-\lambda \right)=0
Use the distributive property to multiply 3\lambda -6 by 3+6\lambda and combine like terms.
-27\lambda +18\lambda ^{2}-18+3\lambda -2\lambda ^{2}+2=0
Use the distributive property to multiply 2\lambda +1 by 2-\lambda and combine like terms.
-24\lambda +18\lambda ^{2}-18-2\lambda ^{2}+2=0
Combine -27\lambda and 3\lambda to get -24\lambda .
-24\lambda +16\lambda ^{2}-18+2=0
Combine 18\lambda ^{2} and -2\lambda ^{2} to get 16\lambda ^{2}.
-24\lambda +16\lambda ^{2}-16=0
Add -18 and 2 to get -16.
-3\lambda +2\lambda ^{2}-2=0
Divide both sides by 8.
2\lambda ^{2}-3\lambda -2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-3 ab=2\left(-2\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2\lambda ^{2}+a\lambda +b\lambda -2. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=-4 b=1
The solution is the pair that gives sum -3.
\left(2\lambda ^{2}-4\lambda \right)+\left(\lambda -2\right)
Rewrite 2\lambda ^{2}-3\lambda -2 as \left(2\lambda ^{2}-4\lambda \right)+\left(\lambda -2\right).
2\lambda \left(\lambda -2\right)+\lambda -2
Factor out 2\lambda in 2\lambda ^{2}-4\lambda .
\left(\lambda -2\right)\left(2\lambda +1\right)
Factor out common term \lambda -2 by using distributive property.
\lambda =2 \lambda =-\frac{1}{2}
To find equation solutions, solve \lambda -2=0 and 2\lambda +1=0.
-27\lambda +18\lambda ^{2}-18+\left(2\lambda +1\right)\left(2-\lambda \right)=0
Use the distributive property to multiply 3\lambda -6 by 3+6\lambda and combine like terms.
-27\lambda +18\lambda ^{2}-18+3\lambda -2\lambda ^{2}+2=0
Use the distributive property to multiply 2\lambda +1 by 2-\lambda and combine like terms.
-24\lambda +18\lambda ^{2}-18-2\lambda ^{2}+2=0
Combine -27\lambda and 3\lambda to get -24\lambda .
-24\lambda +16\lambda ^{2}-18+2=0
Combine 18\lambda ^{2} and -2\lambda ^{2} to get 16\lambda ^{2}.
-24\lambda +16\lambda ^{2}-16=0
Add -18 and 2 to get -16.
16\lambda ^{2}-24\lambda -16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\left(-16\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -24 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-24\right)±\sqrt{576-4\times 16\left(-16\right)}}{2\times 16}
Square -24.
\lambda =\frac{-\left(-24\right)±\sqrt{576-64\left(-16\right)}}{2\times 16}
Multiply -4 times 16.
\lambda =\frac{-\left(-24\right)±\sqrt{576+1024}}{2\times 16}
Multiply -64 times -16.
\lambda =\frac{-\left(-24\right)±\sqrt{1600}}{2\times 16}
Add 576 to 1024.
\lambda =\frac{-\left(-24\right)±40}{2\times 16}
Take the square root of 1600.
\lambda =\frac{24±40}{2\times 16}
The opposite of -24 is 24.
\lambda =\frac{24±40}{32}
Multiply 2 times 16.
\lambda =\frac{64}{32}
Now solve the equation \lambda =\frac{24±40}{32} when ± is plus. Add 24 to 40.
\lambda =2
Divide 64 by 32.
\lambda =-\frac{16}{32}
Now solve the equation \lambda =\frac{24±40}{32} when ± is minus. Subtract 40 from 24.
\lambda =-\frac{1}{2}
Reduce the fraction \frac{-16}{32} to lowest terms by extracting and canceling out 16.
\lambda =2 \lambda =-\frac{1}{2}
The equation is now solved.
-27\lambda +18\lambda ^{2}-18+\left(2\lambda +1\right)\left(2-\lambda \right)=0
Use the distributive property to multiply 3\lambda -6 by 3+6\lambda and combine like terms.
-27\lambda +18\lambda ^{2}-18+3\lambda -2\lambda ^{2}+2=0
Use the distributive property to multiply 2\lambda +1 by 2-\lambda and combine like terms.
-24\lambda +18\lambda ^{2}-18-2\lambda ^{2}+2=0
Combine -27\lambda and 3\lambda to get -24\lambda .
-24\lambda +16\lambda ^{2}-18+2=0
Combine 18\lambda ^{2} and -2\lambda ^{2} to get 16\lambda ^{2}.
-24\lambda +16\lambda ^{2}-16=0
Add -18 and 2 to get -16.
-24\lambda +16\lambda ^{2}=16
Add 16 to both sides. Anything plus zero gives itself.
16\lambda ^{2}-24\lambda =16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16\lambda ^{2}-24\lambda }{16}=\frac{16}{16}
Divide both sides by 16.
\lambda ^{2}+\left(-\frac{24}{16}\right)\lambda =\frac{16}{16}
Dividing by 16 undoes the multiplication by 16.
\lambda ^{2}-\frac{3}{2}\lambda =\frac{16}{16}
Reduce the fraction \frac{-24}{16} to lowest terms by extracting and canceling out 8.
\lambda ^{2}-\frac{3}{2}\lambda =1
Divide 16 by 16.
\lambda ^{2}-\frac{3}{2}\lambda +\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-\frac{3}{2}\lambda +\frac{9}{16}=1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-\frac{3}{2}\lambda +\frac{9}{16}=\frac{25}{16}
Add 1 to \frac{9}{16}.
\left(\lambda -\frac{3}{4}\right)^{2}=\frac{25}{16}
Factor \lambda ^{2}-\frac{3}{2}\lambda +\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
\lambda -\frac{3}{4}=\frac{5}{4} \lambda -\frac{3}{4}=-\frac{5}{4}
Simplify.
\lambda =2 \lambda =-\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.