Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x-2x^{2}-48=2
Use the distributive property to multiply 2x-8 by 6-x and combine like terms.
20x-2x^{2}-48-2=0
Subtract 2 from both sides.
20x-2x^{2}-50=0
Subtract 2 from -48 to get -50.
-2x^{2}+20x-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\left(-50\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 20 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-2\right)\left(-50\right)}}{2\left(-2\right)}
Square 20.
x=\frac{-20±\sqrt{400+8\left(-50\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-20±\sqrt{400-400}}{2\left(-2\right)}
Multiply 8 times -50.
x=\frac{-20±\sqrt{0}}{2\left(-2\right)}
Add 400 to -400.
x=-\frac{20}{2\left(-2\right)}
Take the square root of 0.
x=-\frac{20}{-4}
Multiply 2 times -2.
x=5
Divide -20 by -4.
20x-2x^{2}-48=2
Use the distributive property to multiply 2x-8 by 6-x and combine like terms.
20x-2x^{2}=2+48
Add 48 to both sides.
20x-2x^{2}=50
Add 2 and 48 to get 50.
-2x^{2}+20x=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+20x}{-2}=\frac{50}{-2}
Divide both sides by -2.
x^{2}+\frac{20}{-2}x=\frac{50}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-10x=\frac{50}{-2}
Divide 20 by -2.
x^{2}-10x=-25
Divide 50 by -2.
x^{2}-10x+\left(-5\right)^{2}=-25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-25+25
Square -5.
x^{2}-10x+25=0
Add -25 to 25.
\left(x-5\right)^{2}=0
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-5=0 x-5=0
Simplify.
x=5 x=5
Add 5 to both sides of the equation.
x=5
The equation is now solved. Solutions are the same.