Solve for x
x=-6
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
2x^{2}+x-15=15-6x
Use the distributive property to multiply 2x-5 by x+3 and combine like terms.
2x^{2}+x-15-15=-6x
Subtract 15 from both sides.
2x^{2}+x-30=-6x
Subtract 15 from -15 to get -30.
2x^{2}+x-30+6x=0
Add 6x to both sides.
2x^{2}+7x-30=0
Combine x and 6x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-30\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\left(-30\right)}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\left(-30\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49+240}}{2\times 2}
Multiply -8 times -30.
x=\frac{-7±\sqrt{289}}{2\times 2}
Add 49 to 240.
x=\frac{-7±17}{2\times 2}
Take the square root of 289.
x=\frac{-7±17}{4}
Multiply 2 times 2.
x=\frac{10}{4}
Now solve the equation x=\frac{-7±17}{4} when ± is plus. Add -7 to 17.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{4}
Now solve the equation x=\frac{-7±17}{4} when ± is minus. Subtract 17 from -7.
x=-6
Divide -24 by 4.
x=\frac{5}{2} x=-6
The equation is now solved.
2x^{2}+x-15=15-6x
Use the distributive property to multiply 2x-5 by x+3 and combine like terms.
2x^{2}+x-15+6x=15
Add 6x to both sides.
2x^{2}+7x-15=15
Combine x and 6x to get 7x.
2x^{2}+7x=15+15
Add 15 to both sides.
2x^{2}+7x=30
Add 15 and 15 to get 30.
\frac{2x^{2}+7x}{2}=\frac{30}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=\frac{30}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x=15
Divide 30 by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=15+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=15+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{289}{16}
Add 15 to \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=\frac{289}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{17}{4} x+\frac{7}{4}=-\frac{17}{4}
Simplify.
x=\frac{5}{2} x=-6
Subtract \frac{7}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}