Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+x-15=15-6x
Use the distributive property to multiply 2x-5 by x+3 and combine like terms.
2x^{2}+x-15-15=-6x
Subtract 15 from both sides.
2x^{2}+x-30=-6x
Subtract 15 from -15 to get -30.
2x^{2}+x-30+6x=0
Add 6x to both sides.
2x^{2}+7x-30=0
Combine x and 6x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-30\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 7 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\left(-30\right)}}{2\times 2}
Square 7.
x=\frac{-7±\sqrt{49-8\left(-30\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{49+240}}{2\times 2}
Multiply -8 times -30.
x=\frac{-7±\sqrt{289}}{2\times 2}
Add 49 to 240.
x=\frac{-7±17}{2\times 2}
Take the square root of 289.
x=\frac{-7±17}{4}
Multiply 2 times 2.
x=\frac{10}{4}
Now solve the equation x=\frac{-7±17}{4} when ± is plus. Add -7 to 17.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{4}
Now solve the equation x=\frac{-7±17}{4} when ± is minus. Subtract 17 from -7.
x=-6
Divide -24 by 4.
x=\frac{5}{2} x=-6
The equation is now solved.
2x^{2}+x-15=15-6x
Use the distributive property to multiply 2x-5 by x+3 and combine like terms.
2x^{2}+x-15+6x=15
Add 6x to both sides.
2x^{2}+7x-15=15
Combine x and 6x to get 7x.
2x^{2}+7x=15+15
Add 15 to both sides.
2x^{2}+7x=30
Add 15 and 15 to get 30.
\frac{2x^{2}+7x}{2}=\frac{30}{2}
Divide both sides by 2.
x^{2}+\frac{7}{2}x=\frac{30}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{7}{2}x=15
Divide 30 by 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=15+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=15+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{289}{16}
Add 15 to \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=\frac{289}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{17}{4} x+\frac{7}{4}=-\frac{17}{4}
Simplify.
x=\frac{5}{2} x=-6
Subtract \frac{7}{4} from both sides of the equation.