Solve for x
x = \frac{5 \sqrt{205} + 55}{3} \approx 42.196368439
x=\frac{55-5\sqrt{205}}{3}\approx -5.529701772
Graph
Share
Copied to clipboard
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 100=642000
Add 30 and 100 to get 130.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 100=642000
Use the distributive property to multiply 2x-40 by 3x-50 and combine like terms.
780x^{2}-28600x+260000+2000\times 100=642000
Use the distributive property to multiply 6x^{2}-220x+2000 by 130.
780x^{2}-28600x+260000+200000=642000
Multiply 2000 and 100 to get 200000.
780x^{2}-28600x+460000=642000
Add 260000 and 200000 to get 460000.
780x^{2}-28600x+460000-642000=0
Subtract 642000 from both sides.
780x^{2}-28600x-182000=0
Subtract 642000 from 460000 to get -182000.
x=\frac{-\left(-28600\right)±\sqrt{\left(-28600\right)^{2}-4\times 780\left(-182000\right)}}{2\times 780}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 780 for a, -28600 for b, and -182000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28600\right)±\sqrt{817960000-4\times 780\left(-182000\right)}}{2\times 780}
Square -28600.
x=\frac{-\left(-28600\right)±\sqrt{817960000-3120\left(-182000\right)}}{2\times 780}
Multiply -4 times 780.
x=\frac{-\left(-28600\right)±\sqrt{817960000+567840000}}{2\times 780}
Multiply -3120 times -182000.
x=\frac{-\left(-28600\right)±\sqrt{1385800000}}{2\times 780}
Add 817960000 to 567840000.
x=\frac{-\left(-28600\right)±2600\sqrt{205}}{2\times 780}
Take the square root of 1385800000.
x=\frac{28600±2600\sqrt{205}}{2\times 780}
The opposite of -28600 is 28600.
x=\frac{28600±2600\sqrt{205}}{1560}
Multiply 2 times 780.
x=\frac{2600\sqrt{205}+28600}{1560}
Now solve the equation x=\frac{28600±2600\sqrt{205}}{1560} when ± is plus. Add 28600 to 2600\sqrt{205}.
x=\frac{5\sqrt{205}+55}{3}
Divide 28600+2600\sqrt{205} by 1560.
x=\frac{28600-2600\sqrt{205}}{1560}
Now solve the equation x=\frac{28600±2600\sqrt{205}}{1560} when ± is minus. Subtract 2600\sqrt{205} from 28600.
x=\frac{55-5\sqrt{205}}{3}
Divide 28600-2600\sqrt{205} by 1560.
x=\frac{5\sqrt{205}+55}{3} x=\frac{55-5\sqrt{205}}{3}
The equation is now solved.
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 100=642000
Add 30 and 100 to get 130.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 100=642000
Use the distributive property to multiply 2x-40 by 3x-50 and combine like terms.
780x^{2}-28600x+260000+2000\times 100=642000
Use the distributive property to multiply 6x^{2}-220x+2000 by 130.
780x^{2}-28600x+260000+200000=642000
Multiply 2000 and 100 to get 200000.
780x^{2}-28600x+460000=642000
Add 260000 and 200000 to get 460000.
780x^{2}-28600x=642000-460000
Subtract 460000 from both sides.
780x^{2}-28600x=182000
Subtract 460000 from 642000 to get 182000.
\frac{780x^{2}-28600x}{780}=\frac{182000}{780}
Divide both sides by 780.
x^{2}+\left(-\frac{28600}{780}\right)x=\frac{182000}{780}
Dividing by 780 undoes the multiplication by 780.
x^{2}-\frac{110}{3}x=\frac{182000}{780}
Reduce the fraction \frac{-28600}{780} to lowest terms by extracting and canceling out 260.
x^{2}-\frac{110}{3}x=\frac{700}{3}
Reduce the fraction \frac{182000}{780} to lowest terms by extracting and canceling out 260.
x^{2}-\frac{110}{3}x+\left(-\frac{55}{3}\right)^{2}=\frac{700}{3}+\left(-\frac{55}{3}\right)^{2}
Divide -\frac{110}{3}, the coefficient of the x term, by 2 to get -\frac{55}{3}. Then add the square of -\frac{55}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=\frac{700}{3}+\frac{3025}{9}
Square -\frac{55}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=\frac{5125}{9}
Add \frac{700}{3} to \frac{3025}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{3}\right)^{2}=\frac{5125}{9}
Factor x^{2}-\frac{110}{3}x+\frac{3025}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{3}\right)^{2}}=\sqrt{\frac{5125}{9}}
Take the square root of both sides of the equation.
x-\frac{55}{3}=\frac{5\sqrt{205}}{3} x-\frac{55}{3}=-\frac{5\sqrt{205}}{3}
Simplify.
x=\frac{5\sqrt{205}+55}{3} x=\frac{55-5\sqrt{205}}{3}
Add \frac{55}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}