Evaluate
13x^{2}-25y^{2}
Expand
13x^{2}-25y^{2}
Share
Copied to clipboard
\left(2x\right)^{2}-\left(3y\right)^{2}-\left(4y-3x\right)\left(3x+4y\right)
Consider \left(2x-3y\right)\left(3y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-\left(3y\right)^{2}-\left(4y-3x\right)\left(3x+4y\right)
Expand \left(2x\right)^{2}.
4x^{2}-\left(3y\right)^{2}-\left(4y-3x\right)\left(3x+4y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-3^{2}y^{2}-\left(4y-3x\right)\left(3x+4y\right)
Expand \left(3y\right)^{2}.
4x^{2}-9y^{2}-\left(4y-3x\right)\left(3x+4y\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9y^{2}-\left(\left(4y\right)^{2}-\left(3x\right)^{2}\right)
Consider \left(4y-3x\right)\left(3x+4y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}-9y^{2}-\left(4^{2}y^{2}-\left(3x\right)^{2}\right)
Expand \left(4y\right)^{2}.
4x^{2}-9y^{2}-\left(16y^{2}-\left(3x\right)^{2}\right)
Calculate 4 to the power of 2 and get 16.
4x^{2}-9y^{2}-\left(16y^{2}-3^{2}x^{2}\right)
Expand \left(3x\right)^{2}.
4x^{2}-9y^{2}-\left(16y^{2}-9x^{2}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9y^{2}-16y^{2}-\left(-9x^{2}\right)
To find the opposite of 16y^{2}-9x^{2}, find the opposite of each term.
4x^{2}-9y^{2}-16y^{2}+9x^{2}
The opposite of -9x^{2} is 9x^{2}.
4x^{2}-25y^{2}+9x^{2}
Combine -9y^{2} and -16y^{2} to get -25y^{2}.
13x^{2}-25y^{2}
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
\left(2x\right)^{2}-\left(3y\right)^{2}-\left(4y-3x\right)\left(3x+4y\right)
Consider \left(2x-3y\right)\left(3y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-\left(3y\right)^{2}-\left(4y-3x\right)\left(3x+4y\right)
Expand \left(2x\right)^{2}.
4x^{2}-\left(3y\right)^{2}-\left(4y-3x\right)\left(3x+4y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-3^{2}y^{2}-\left(4y-3x\right)\left(3x+4y\right)
Expand \left(3y\right)^{2}.
4x^{2}-9y^{2}-\left(4y-3x\right)\left(3x+4y\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9y^{2}-\left(\left(4y\right)^{2}-\left(3x\right)^{2}\right)
Consider \left(4y-3x\right)\left(3x+4y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}-9y^{2}-\left(4^{2}y^{2}-\left(3x\right)^{2}\right)
Expand \left(4y\right)^{2}.
4x^{2}-9y^{2}-\left(16y^{2}-\left(3x\right)^{2}\right)
Calculate 4 to the power of 2 and get 16.
4x^{2}-9y^{2}-\left(16y^{2}-3^{2}x^{2}\right)
Expand \left(3x\right)^{2}.
4x^{2}-9y^{2}-\left(16y^{2}-9x^{2}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9y^{2}-16y^{2}-\left(-9x^{2}\right)
To find the opposite of 16y^{2}-9x^{2}, find the opposite of each term.
4x^{2}-9y^{2}-16y^{2}+9x^{2}
The opposite of -9x^{2} is 9x^{2}.
4x^{2}-25y^{2}+9x^{2}
Combine -9y^{2} and -16y^{2} to get -25y^{2}.
13x^{2}-25y^{2}
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}