Solve for x
x=\frac{\sqrt{2685822321}}{52}+\frac{4003}{4}\approx 1997.383074695
x=-\frac{\sqrt{2685822321}}{52}+\frac{4003}{4}\approx 4.116925305
Graph
Share
Copied to clipboard
\left(2x-3\right)\left(x-2000\right)\left(30+100\right)+2000\times 1000=642000
Multiply 40 and 50 to get 2000.
\left(2x-3\right)\left(x-2000\right)\times 130+2000\times 1000=642000
Add 30 and 100 to get 130.
\left(2x^{2}-4003x+6000\right)\times 130+2000\times 1000=642000
Use the distributive property to multiply 2x-3 by x-2000 and combine like terms.
260x^{2}-520390x+780000+2000\times 1000=642000
Use the distributive property to multiply 2x^{2}-4003x+6000 by 130.
260x^{2}-520390x+780000+2000000=642000
Multiply 2000 and 1000 to get 2000000.
260x^{2}-520390x+2780000=642000
Add 780000 and 2000000 to get 2780000.
260x^{2}-520390x+2780000-642000=0
Subtract 642000 from both sides.
260x^{2}-520390x+2138000=0
Subtract 642000 from 2780000 to get 2138000.
x=\frac{-\left(-520390\right)±\sqrt{\left(-520390\right)^{2}-4\times 260\times 2138000}}{2\times 260}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 260 for a, -520390 for b, and 2138000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-520390\right)±\sqrt{270805752100-4\times 260\times 2138000}}{2\times 260}
Square -520390.
x=\frac{-\left(-520390\right)±\sqrt{270805752100-1040\times 2138000}}{2\times 260}
Multiply -4 times 260.
x=\frac{-\left(-520390\right)±\sqrt{270805752100-2223520000}}{2\times 260}
Multiply -1040 times 2138000.
x=\frac{-\left(-520390\right)±\sqrt{268582232100}}{2\times 260}
Add 270805752100 to -2223520000.
x=\frac{-\left(-520390\right)±10\sqrt{2685822321}}{2\times 260}
Take the square root of 268582232100.
x=\frac{520390±10\sqrt{2685822321}}{2\times 260}
The opposite of -520390 is 520390.
x=\frac{520390±10\sqrt{2685822321}}{520}
Multiply 2 times 260.
x=\frac{10\sqrt{2685822321}+520390}{520}
Now solve the equation x=\frac{520390±10\sqrt{2685822321}}{520} when ± is plus. Add 520390 to 10\sqrt{2685822321}.
x=\frac{\sqrt{2685822321}}{52}+\frac{4003}{4}
Divide 520390+10\sqrt{2685822321} by 520.
x=\frac{520390-10\sqrt{2685822321}}{520}
Now solve the equation x=\frac{520390±10\sqrt{2685822321}}{520} when ± is minus. Subtract 10\sqrt{2685822321} from 520390.
x=-\frac{\sqrt{2685822321}}{52}+\frac{4003}{4}
Divide 520390-10\sqrt{2685822321} by 520.
x=\frac{\sqrt{2685822321}}{52}+\frac{4003}{4} x=-\frac{\sqrt{2685822321}}{52}+\frac{4003}{4}
The equation is now solved.
\left(2x-3\right)\left(x-2000\right)\left(30+100\right)+2000\times 1000=642000
Multiply 40 and 50 to get 2000.
\left(2x-3\right)\left(x-2000\right)\times 130+2000\times 1000=642000
Add 30 and 100 to get 130.
\left(2x^{2}-4003x+6000\right)\times 130+2000\times 1000=642000
Use the distributive property to multiply 2x-3 by x-2000 and combine like terms.
260x^{2}-520390x+780000+2000\times 1000=642000
Use the distributive property to multiply 2x^{2}-4003x+6000 by 130.
260x^{2}-520390x+780000+2000000=642000
Multiply 2000 and 1000 to get 2000000.
260x^{2}-520390x+2780000=642000
Add 780000 and 2000000 to get 2780000.
260x^{2}-520390x=642000-2780000
Subtract 2780000 from both sides.
260x^{2}-520390x=-2138000
Subtract 2780000 from 642000 to get -2138000.
\frac{260x^{2}-520390x}{260}=-\frac{2138000}{260}
Divide both sides by 260.
x^{2}+\left(-\frac{520390}{260}\right)x=-\frac{2138000}{260}
Dividing by 260 undoes the multiplication by 260.
x^{2}-\frac{4003}{2}x=-\frac{2138000}{260}
Reduce the fraction \frac{-520390}{260} to lowest terms by extracting and canceling out 130.
x^{2}-\frac{4003}{2}x=-\frac{106900}{13}
Reduce the fraction \frac{-2138000}{260} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{4003}{2}x+\left(-\frac{4003}{4}\right)^{2}=-\frac{106900}{13}+\left(-\frac{4003}{4}\right)^{2}
Divide -\frac{4003}{2}, the coefficient of the x term, by 2 to get -\frac{4003}{4}. Then add the square of -\frac{4003}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4003}{2}x+\frac{16024009}{16}=-\frac{106900}{13}+\frac{16024009}{16}
Square -\frac{4003}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4003}{2}x+\frac{16024009}{16}=\frac{206601717}{208}
Add -\frac{106900}{13} to \frac{16024009}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4003}{4}\right)^{2}=\frac{206601717}{208}
Factor x^{2}-\frac{4003}{2}x+\frac{16024009}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4003}{4}\right)^{2}}=\sqrt{\frac{206601717}{208}}
Take the square root of both sides of the equation.
x-\frac{4003}{4}=\frac{\sqrt{2685822321}}{52} x-\frac{4003}{4}=-\frac{\sqrt{2685822321}}{52}
Simplify.
x=\frac{\sqrt{2685822321}}{52}+\frac{4003}{4} x=-\frac{\sqrt{2685822321}}{52}+\frac{4003}{4}
Add \frac{4003}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}