Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-7x-3+x\left(5-2x\right)=7x
Use the distributive property to multiply 2x-3 by 3x+1 and combine like terms.
6x^{2}-7x-3+5x-2x^{2}=7x
Use the distributive property to multiply x by 5-2x.
6x^{2}-2x-3-2x^{2}=7x
Combine -7x and 5x to get -2x.
4x^{2}-2x-3=7x
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
4x^{2}-2x-3-7x=0
Subtract 7x from both sides.
4x^{2}-9x-3=0
Combine -2x and -7x to get -9x.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -9 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-3\right)}}{2\times 4}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-16\left(-3\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-9\right)±\sqrt{81+48}}{2\times 4}
Multiply -16 times -3.
x=\frac{-\left(-9\right)±\sqrt{129}}{2\times 4}
Add 81 to 48.
x=\frac{9±\sqrt{129}}{2\times 4}
The opposite of -9 is 9.
x=\frac{9±\sqrt{129}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{129}+9}{8}
Now solve the equation x=\frac{9±\sqrt{129}}{8} when ± is plus. Add 9 to \sqrt{129}.
x=\frac{9-\sqrt{129}}{8}
Now solve the equation x=\frac{9±\sqrt{129}}{8} when ± is minus. Subtract \sqrt{129} from 9.
x=\frac{\sqrt{129}+9}{8} x=\frac{9-\sqrt{129}}{8}
The equation is now solved.
6x^{2}-7x-3+x\left(5-2x\right)=7x
Use the distributive property to multiply 2x-3 by 3x+1 and combine like terms.
6x^{2}-7x-3+5x-2x^{2}=7x
Use the distributive property to multiply x by 5-2x.
6x^{2}-2x-3-2x^{2}=7x
Combine -7x and 5x to get -2x.
4x^{2}-2x-3=7x
Combine 6x^{2} and -2x^{2} to get 4x^{2}.
4x^{2}-2x-3-7x=0
Subtract 7x from both sides.
4x^{2}-9x-3=0
Combine -2x and -7x to get -9x.
4x^{2}-9x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{4x^{2}-9x}{4}=\frac{3}{4}
Divide both sides by 4.
x^{2}-\frac{9}{4}x=\frac{3}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{9}{8}\right)^{2}
Divide -\frac{9}{4}, the coefficient of the x term, by 2 to get -\frac{9}{8}. Then add the square of -\frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{3}{4}+\frac{81}{64}
Square -\frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{129}{64}
Add \frac{3}{4} to \frac{81}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{8}\right)^{2}=\frac{129}{64}
Factor x^{2}-\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{\frac{129}{64}}
Take the square root of both sides of the equation.
x-\frac{9}{8}=\frac{\sqrt{129}}{8} x-\frac{9}{8}=-\frac{\sqrt{129}}{8}
Simplify.
x=\frac{\sqrt{129}+9}{8} x=\frac{9-\sqrt{129}}{8}
Add \frac{9}{8} to both sides of the equation.