Solve for x
x = \frac{\sqrt{145} - 9}{2} \approx 1.520797289
x=\frac{-\sqrt{145}-9}{2}\approx -10.520797289
Graph
Share
Copied to clipboard
4x^{2}+36x+80=144
Use the distributive property to multiply 2x+10 by 2x+8 and combine like terms.
4x^{2}+36x+80-144=0
Subtract 144 from both sides.
4x^{2}+36x-64=0
Subtract 144 from 80 to get -64.
x=\frac{-36±\sqrt{36^{2}-4\times 4\left(-64\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 36 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 4\left(-64\right)}}{2\times 4}
Square 36.
x=\frac{-36±\sqrt{1296-16\left(-64\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-36±\sqrt{1296+1024}}{2\times 4}
Multiply -16 times -64.
x=\frac{-36±\sqrt{2320}}{2\times 4}
Add 1296 to 1024.
x=\frac{-36±4\sqrt{145}}{2\times 4}
Take the square root of 2320.
x=\frac{-36±4\sqrt{145}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{145}-36}{8}
Now solve the equation x=\frac{-36±4\sqrt{145}}{8} when ± is plus. Add -36 to 4\sqrt{145}.
x=\frac{\sqrt{145}-9}{2}
Divide -36+4\sqrt{145} by 8.
x=\frac{-4\sqrt{145}-36}{8}
Now solve the equation x=\frac{-36±4\sqrt{145}}{8} when ± is minus. Subtract 4\sqrt{145} from -36.
x=\frac{-\sqrt{145}-9}{2}
Divide -36-4\sqrt{145} by 8.
x=\frac{\sqrt{145}-9}{2} x=\frac{-\sqrt{145}-9}{2}
The equation is now solved.
4x^{2}+36x+80=144
Use the distributive property to multiply 2x+10 by 2x+8 and combine like terms.
4x^{2}+36x=144-80
Subtract 80 from both sides.
4x^{2}+36x=64
Subtract 80 from 144 to get 64.
\frac{4x^{2}+36x}{4}=\frac{64}{4}
Divide both sides by 4.
x^{2}+\frac{36}{4}x=\frac{64}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+9x=\frac{64}{4}
Divide 36 by 4.
x^{2}+9x=16
Divide 64 by 4.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=16+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=16+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{145}{4}
Add 16 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{145}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{\sqrt{145}}{2} x+\frac{9}{2}=-\frac{\sqrt{145}}{2}
Simplify.
x=\frac{\sqrt{145}-9}{2} x=\frac{-\sqrt{145}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}