Solve for x
x=3
Graph
Quiz
Quadratic Equation
5 problems similar to:
\left( 2900-2500-50x \right) \left( 8+4x \right) = 5000
Share
Copied to clipboard
\left(400-50x\right)\left(8+4x\right)=5000
Subtract 2500 from 2900 to get 400.
3200+1200x-200x^{2}=5000
Use the distributive property to multiply 400-50x by 8+4x and combine like terms.
3200+1200x-200x^{2}-5000=0
Subtract 5000 from both sides.
-1800+1200x-200x^{2}=0
Subtract 5000 from 3200 to get -1800.
-200x^{2}+1200x-1800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-200\right)\left(-1800\right)}}{2\left(-200\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -200 for a, 1200 for b, and -1800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-200\right)\left(-1800\right)}}{2\left(-200\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+800\left(-1800\right)}}{2\left(-200\right)}
Multiply -4 times -200.
x=\frac{-1200±\sqrt{1440000-1440000}}{2\left(-200\right)}
Multiply 800 times -1800.
x=\frac{-1200±\sqrt{0}}{2\left(-200\right)}
Add 1440000 to -1440000.
x=-\frac{1200}{2\left(-200\right)}
Take the square root of 0.
x=-\frac{1200}{-400}
Multiply 2 times -200.
x=3
Divide -1200 by -400.
\left(400-50x\right)\left(8+4x\right)=5000
Subtract 2500 from 2900 to get 400.
3200+1200x-200x^{2}=5000
Use the distributive property to multiply 400-50x by 8+4x and combine like terms.
1200x-200x^{2}=5000-3200
Subtract 3200 from both sides.
1200x-200x^{2}=1800
Subtract 3200 from 5000 to get 1800.
-200x^{2}+1200x=1800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-200x^{2}+1200x}{-200}=\frac{1800}{-200}
Divide both sides by -200.
x^{2}+\frac{1200}{-200}x=\frac{1800}{-200}
Dividing by -200 undoes the multiplication by -200.
x^{2}-6x=\frac{1800}{-200}
Divide 1200 by -200.
x^{2}-6x=-9
Divide 1800 by -200.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-9+9
Square -3.
x^{2}-6x+9=0
Add -9 to 9.
\left(x-3\right)^{2}=0
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-3=0 x-3=0
Simplify.
x=3 x=3
Add 3 to both sides of the equation.
x=3
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}