Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

13125+500a-a^{2}=10000
Use the distributive property to multiply 25+a by 525-a and combine like terms.
13125+500a-a^{2}-10000=0
Subtract 10000 from both sides.
3125+500a-a^{2}=0
Subtract 10000 from 13125 to get 3125.
-a^{2}+500a+3125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-500±\sqrt{500^{2}-4\left(-1\right)\times 3125}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 500 for b, and 3125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-500±\sqrt{250000-4\left(-1\right)\times 3125}}{2\left(-1\right)}
Square 500.
a=\frac{-500±\sqrt{250000+4\times 3125}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-500±\sqrt{250000+12500}}{2\left(-1\right)}
Multiply 4 times 3125.
a=\frac{-500±\sqrt{262500}}{2\left(-1\right)}
Add 250000 to 12500.
a=\frac{-500±50\sqrt{105}}{2\left(-1\right)}
Take the square root of 262500.
a=\frac{-500±50\sqrt{105}}{-2}
Multiply 2 times -1.
a=\frac{50\sqrt{105}-500}{-2}
Now solve the equation a=\frac{-500±50\sqrt{105}}{-2} when ± is plus. Add -500 to 50\sqrt{105}.
a=250-25\sqrt{105}
Divide -500+50\sqrt{105} by -2.
a=\frac{-50\sqrt{105}-500}{-2}
Now solve the equation a=\frac{-500±50\sqrt{105}}{-2} when ± is minus. Subtract 50\sqrt{105} from -500.
a=25\sqrt{105}+250
Divide -500-50\sqrt{105} by -2.
a=250-25\sqrt{105} a=25\sqrt{105}+250
The equation is now solved.
13125+500a-a^{2}=10000
Use the distributive property to multiply 25+a by 525-a and combine like terms.
500a-a^{2}=10000-13125
Subtract 13125 from both sides.
500a-a^{2}=-3125
Subtract 13125 from 10000 to get -3125.
-a^{2}+500a=-3125
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}+500a}{-1}=-\frac{3125}{-1}
Divide both sides by -1.
a^{2}+\frac{500}{-1}a=-\frac{3125}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-500a=-\frac{3125}{-1}
Divide 500 by -1.
a^{2}-500a=3125
Divide -3125 by -1.
a^{2}-500a+\left(-250\right)^{2}=3125+\left(-250\right)^{2}
Divide -500, the coefficient of the x term, by 2 to get -250. Then add the square of -250 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-500a+62500=3125+62500
Square -250.
a^{2}-500a+62500=65625
Add 3125 to 62500.
\left(a-250\right)^{2}=65625
Factor a^{2}-500a+62500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-250\right)^{2}}=\sqrt{65625}
Take the square root of both sides of the equation.
a-250=25\sqrt{105} a-250=-25\sqrt{105}
Simplify.
a=25\sqrt{105}+250 a=250-25\sqrt{105}
Add 250 to both sides of the equation.