Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

640-72x+2x^{2}=570
Use the distributive property to multiply 20-x by 32-2x and combine like terms.
640-72x+2x^{2}-570=0
Subtract 570 from both sides.
70-72x+2x^{2}=0
Subtract 570 from 640 to get 70.
2x^{2}-72x+70=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 2\times 70}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -72 for b, and 70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 2\times 70}}{2\times 2}
Square -72.
x=\frac{-\left(-72\right)±\sqrt{5184-8\times 70}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-72\right)±\sqrt{5184-560}}{2\times 2}
Multiply -8 times 70.
x=\frac{-\left(-72\right)±\sqrt{4624}}{2\times 2}
Add 5184 to -560.
x=\frac{-\left(-72\right)±68}{2\times 2}
Take the square root of 4624.
x=\frac{72±68}{2\times 2}
The opposite of -72 is 72.
x=\frac{72±68}{4}
Multiply 2 times 2.
x=\frac{140}{4}
Now solve the equation x=\frac{72±68}{4} when ± is plus. Add 72 to 68.
x=35
Divide 140 by 4.
x=\frac{4}{4}
Now solve the equation x=\frac{72±68}{4} when ± is minus. Subtract 68 from 72.
x=1
Divide 4 by 4.
x=35 x=1
The equation is now solved.
640-72x+2x^{2}=570
Use the distributive property to multiply 20-x by 32-2x and combine like terms.
-72x+2x^{2}=570-640
Subtract 640 from both sides.
-72x+2x^{2}=-70
Subtract 640 from 570 to get -70.
2x^{2}-72x=-70
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-72x}{2}=-\frac{70}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{72}{2}\right)x=-\frac{70}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-36x=-\frac{70}{2}
Divide -72 by 2.
x^{2}-36x=-35
Divide -70 by 2.
x^{2}-36x+\left(-18\right)^{2}=-35+\left(-18\right)^{2}
Divide -36, the coefficient of the x term, by 2 to get -18. Then add the square of -18 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-36x+324=-35+324
Square -18.
x^{2}-36x+324=289
Add -35 to 324.
\left(x-18\right)^{2}=289
Factor x^{2}-36x+324. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-18\right)^{2}}=\sqrt{289}
Take the square root of both sides of the equation.
x-18=17 x-18=-17
Simplify.
x=35 x=1
Add 18 to both sides of the equation.