Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{6}\right)^{2}-2\sqrt{3}\sqrt{6}-2\sqrt{6}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of 2\sqrt{6}-\sqrt{3}+\sqrt{2} by each term of 2\sqrt{6}-\sqrt{3}-\sqrt{2}.
4\times 6-2\sqrt{3}\sqrt{6}-2\sqrt{6}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
24-2\sqrt{3}\sqrt{6}-2\sqrt{6}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply 4 and 6 to get 24.
24-2\sqrt{3}\sqrt{3}\sqrt{2}-2\sqrt{6}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
24-2\times 3\sqrt{2}-2\sqrt{6}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
24-6\sqrt{2}-2\sqrt{6}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply -2 and 3 to get -6.
24-6\sqrt{2}-2\sqrt{2}\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
24-6\sqrt{2}-2\times 2\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
24-6\sqrt{2}-4\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
24-6\sqrt{2}-4\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{2}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
24-6\sqrt{2}-4\sqrt{3}-2\times 3\sqrt{2}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
24-6\sqrt{2}-4\sqrt{3}-6\sqrt{2}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply -2 and 3 to get -6.
24-12\sqrt{2}-4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Combine -6\sqrt{2} and -6\sqrt{2} to get -12\sqrt{2}.
24-12\sqrt{2}-4\sqrt{3}+3+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
27-12\sqrt{2}-4\sqrt{3}+\sqrt{3}\sqrt{2}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Add 24 and 3 to get 27.
27-12\sqrt{2}-4\sqrt{3}+\sqrt{6}+2\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-12\sqrt{2}-4\sqrt{3}+\sqrt{6}+2\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
27-12\sqrt{2}-4\sqrt{3}+\sqrt{6}+2\times 2\sqrt{3}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
27-12\sqrt{2}-4\sqrt{3}+\sqrt{6}+4\sqrt{3}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply 2 and 2 to get 4.
27-12\sqrt{2}+\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Combine -4\sqrt{3} and 4\sqrt{3} to get 0.
27-12\sqrt{2}+\sqrt{6}-\sqrt{6}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
27-12\sqrt{2}-\left(\sqrt{2}\right)^{2}
Combine \sqrt{6} and -\sqrt{6} to get 0.
27-12\sqrt{2}-2
The square of \sqrt{2} is 2.
25-12\sqrt{2}
Subtract 2 from 27 to get 25.