Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{5}-2\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{20}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{5}-2\sqrt{3}\right)\left(2\sqrt{3}+2\sqrt{5}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(2\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
4\left(\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\times 5-\left(2\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
20-\left(2\sqrt{3}\right)^{2}
Multiply 4 and 5 to get 20.
20-2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
20-4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
20-4\times 3
The square of \sqrt{3} is 3.
20-12
Multiply 4 and 3 to get 12.
8
Subtract 12 from 20 to get 8.