Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2\sqrt{5}-\sqrt{5}x\right)\left(5-x\right)\times 2\sqrt{5}=20
Multiply both sides of the equation by 5.
\left(5\left(2\sqrt{5}-\sqrt{5}x\right)-\left(2\sqrt{5}-\sqrt{5}x\right)x\right)\times 2\sqrt{5}=20
Use the distributive property to multiply 2\sqrt{5}-\sqrt{5}x by 5-x.
\left(10\left(2\sqrt{5}-\sqrt{5}x\right)-2\left(2\sqrt{5}-\sqrt{5}x\right)x\right)\sqrt{5}=20
Use the distributive property to multiply 5\left(2\sqrt{5}-\sqrt{5}x\right)-\left(2\sqrt{5}-\sqrt{5}x\right)x by 2.
10\left(2\sqrt{5}-\sqrt{5}x\right)\sqrt{5}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
Use the distributive property to multiply 10\left(2\sqrt{5}-\sqrt{5}x\right)-2\left(2\sqrt{5}-\sqrt{5}x\right)x by \sqrt{5}.
10\left(2\sqrt{5}-\sqrt{5}x\right)\sqrt{5}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
Subtract 20 from both sides.
\left(20\sqrt{5}-10\sqrt{5}x\right)\sqrt{5}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
Use the distributive property to multiply 10 by 2\sqrt{5}-\sqrt{5}x.
20\left(\sqrt{5}\right)^{2}-10x\left(\sqrt{5}\right)^{2}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
Use the distributive property to multiply 20\sqrt{5}-10\sqrt{5}x by \sqrt{5}.
20\times 5-10x\left(\sqrt{5}\right)^{2}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
The square of \sqrt{5} is 5.
100-10x\left(\sqrt{5}\right)^{2}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
Multiply 20 and 5 to get 100.
100-10x\times 5-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
The square of \sqrt{5} is 5.
100-50x-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}-20=0
Multiply -10 and 5 to get -50.
100-50x+\left(-4\sqrt{5}+2\sqrt{5}x\right)x\sqrt{5}-20=0
Use the distributive property to multiply -2 by 2\sqrt{5}-\sqrt{5}x.
100-50x+\left(-4\sqrt{5}x+2\sqrt{5}x^{2}\right)\sqrt{5}-20=0
Use the distributive property to multiply -4\sqrt{5}+2\sqrt{5}x by x.
100-50x-4x\left(\sqrt{5}\right)^{2}+2x^{2}\left(\sqrt{5}\right)^{2}-20=0
Use the distributive property to multiply -4\sqrt{5}x+2\sqrt{5}x^{2} by \sqrt{5}.
100-50x-4x\times 5+2x^{2}\left(\sqrt{5}\right)^{2}-20=0
The square of \sqrt{5} is 5.
100-50x-20x+2x^{2}\left(\sqrt{5}\right)^{2}-20=0
Multiply -4 and 5 to get -20.
100-50x-20x+2x^{2}\times 5-20=0
The square of \sqrt{5} is 5.
100-50x-20x+10x^{2}-20=0
Multiply 2 and 5 to get 10.
100-70x+10x^{2}-20=0
Combine -50x and -20x to get -70x.
80-70x+10x^{2}=0
Subtract 20 from 100 to get 80.
10x^{2}-70x+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 10\times 80}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -70 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 10\times 80}}{2\times 10}
Square -70.
x=\frac{-\left(-70\right)±\sqrt{4900-40\times 80}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-70\right)±\sqrt{4900-3200}}{2\times 10}
Multiply -40 times 80.
x=\frac{-\left(-70\right)±\sqrt{1700}}{2\times 10}
Add 4900 to -3200.
x=\frac{-\left(-70\right)±10\sqrt{17}}{2\times 10}
Take the square root of 1700.
x=\frac{70±10\sqrt{17}}{2\times 10}
The opposite of -70 is 70.
x=\frac{70±10\sqrt{17}}{20}
Multiply 2 times 10.
x=\frac{10\sqrt{17}+70}{20}
Now solve the equation x=\frac{70±10\sqrt{17}}{20} when ± is plus. Add 70 to 10\sqrt{17}.
x=\frac{\sqrt{17}+7}{2}
Divide 70+10\sqrt{17} by 20.
x=\frac{70-10\sqrt{17}}{20}
Now solve the equation x=\frac{70±10\sqrt{17}}{20} when ± is minus. Subtract 10\sqrt{17} from 70.
x=\frac{7-\sqrt{17}}{2}
Divide 70-10\sqrt{17} by 20.
x=\frac{\sqrt{17}+7}{2} x=\frac{7-\sqrt{17}}{2}
The equation is now solved.
\left(2\sqrt{5}-\sqrt{5}x\right)\left(5-x\right)\times 2\sqrt{5}=20
Multiply both sides of the equation by 5.
\left(5\left(2\sqrt{5}-\sqrt{5}x\right)-\left(2\sqrt{5}-\sqrt{5}x\right)x\right)\times 2\sqrt{5}=20
Use the distributive property to multiply 2\sqrt{5}-\sqrt{5}x by 5-x.
\left(10\left(2\sqrt{5}-\sqrt{5}x\right)-2\left(2\sqrt{5}-\sqrt{5}x\right)x\right)\sqrt{5}=20
Use the distributive property to multiply 5\left(2\sqrt{5}-\sqrt{5}x\right)-\left(2\sqrt{5}-\sqrt{5}x\right)x by 2.
10\left(2\sqrt{5}-\sqrt{5}x\right)\sqrt{5}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
Use the distributive property to multiply 10\left(2\sqrt{5}-\sqrt{5}x\right)-2\left(2\sqrt{5}-\sqrt{5}x\right)x by \sqrt{5}.
\left(20\sqrt{5}-10\sqrt{5}x\right)\sqrt{5}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
Use the distributive property to multiply 10 by 2\sqrt{5}-\sqrt{5}x.
20\left(\sqrt{5}\right)^{2}-10x\left(\sqrt{5}\right)^{2}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
Use the distributive property to multiply 20\sqrt{5}-10\sqrt{5}x by \sqrt{5}.
20\times 5-10x\left(\sqrt{5}\right)^{2}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
The square of \sqrt{5} is 5.
100-10x\left(\sqrt{5}\right)^{2}-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
Multiply 20 and 5 to get 100.
100-10x\times 5-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
The square of \sqrt{5} is 5.
100-50x-2\left(2\sqrt{5}-\sqrt{5}x\right)x\sqrt{5}=20
Multiply -10 and 5 to get -50.
100-50x+\left(-4\sqrt{5}+2\sqrt{5}x\right)x\sqrt{5}=20
Use the distributive property to multiply -2 by 2\sqrt{5}-\sqrt{5}x.
100-50x+\left(-4\sqrt{5}x+2\sqrt{5}x^{2}\right)\sqrt{5}=20
Use the distributive property to multiply -4\sqrt{5}+2\sqrt{5}x by x.
100-50x-4x\left(\sqrt{5}\right)^{2}+2x^{2}\left(\sqrt{5}\right)^{2}=20
Use the distributive property to multiply -4\sqrt{5}x+2\sqrt{5}x^{2} by \sqrt{5}.
100-50x-4x\times 5+2x^{2}\left(\sqrt{5}\right)^{2}=20
The square of \sqrt{5} is 5.
100-50x-20x+2x^{2}\left(\sqrt{5}\right)^{2}=20
Multiply -4 and 5 to get -20.
100-50x-20x+2x^{2}\times 5=20
The square of \sqrt{5} is 5.
100-50x-20x+10x^{2}=20
Multiply 2 and 5 to get 10.
100-70x+10x^{2}=20
Combine -50x and -20x to get -70x.
-70x+10x^{2}=20-100
Subtract 100 from both sides.
-70x+10x^{2}=-80
Subtract 100 from 20 to get -80.
10x^{2}-70x=-80
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-70x}{10}=-\frac{80}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{70}{10}\right)x=-\frac{80}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-7x=-\frac{80}{10}
Divide -70 by 10.
x^{2}-7x=-8
Divide -80 by 10.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-8+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-8+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{17}{4}
Add -8 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{17}}{2} x-\frac{7}{2}=-\frac{\sqrt{17}}{2}
Simplify.
x=\frac{\sqrt{17}+7}{2} x=\frac{7-\sqrt{17}}{2}
Add \frac{7}{2} to both sides of the equation.