Evaluate
\frac{1}{8}=0.125
Factor
\frac{1}{2 ^ {3}} = 0.125
Share
Copied to clipboard
\left(\frac{12+1}{6}+\frac{\frac{5\times 6+1}{6}}{\frac{4\times 15+2}{15}}\right)\times \frac{3}{82}
Multiply 2 and 6 to get 12.
\left(\frac{13}{6}+\frac{\frac{5\times 6+1}{6}}{\frac{4\times 15+2}{15}}\right)\times \frac{3}{82}
Add 12 and 1 to get 13.
\left(\frac{13}{6}+\frac{\left(5\times 6+1\right)\times 15}{6\left(4\times 15+2\right)}\right)\times \frac{3}{82}
Divide \frac{5\times 6+1}{6} by \frac{4\times 15+2}{15} by multiplying \frac{5\times 6+1}{6} by the reciprocal of \frac{4\times 15+2}{15}.
\left(\frac{13}{6}+\frac{5\left(1+5\times 6\right)}{2\left(2+4\times 15\right)}\right)\times \frac{3}{82}
Cancel out 3 in both numerator and denominator.
\left(\frac{13}{6}+\frac{5\left(1+30\right)}{2\left(2+4\times 15\right)}\right)\times \frac{3}{82}
Multiply 5 and 6 to get 30.
\left(\frac{13}{6}+\frac{5\times 31}{2\left(2+4\times 15\right)}\right)\times \frac{3}{82}
Add 1 and 30 to get 31.
\left(\frac{13}{6}+\frac{155}{2\left(2+4\times 15\right)}\right)\times \frac{3}{82}
Multiply 5 and 31 to get 155.
\left(\frac{13}{6}+\frac{155}{2\left(2+60\right)}\right)\times \frac{3}{82}
Multiply 4 and 15 to get 60.
\left(\frac{13}{6}+\frac{155}{2\times 62}\right)\times \frac{3}{82}
Add 2 and 60 to get 62.
\left(\frac{13}{6}+\frac{155}{124}\right)\times \frac{3}{82}
Multiply 2 and 62 to get 124.
\left(\frac{13}{6}+\frac{5}{4}\right)\times \frac{3}{82}
Reduce the fraction \frac{155}{124} to lowest terms by extracting and canceling out 31.
\left(\frac{26}{12}+\frac{15}{12}\right)\times \frac{3}{82}
Least common multiple of 6 and 4 is 12. Convert \frac{13}{6} and \frac{5}{4} to fractions with denominator 12.
\frac{26+15}{12}\times \frac{3}{82}
Since \frac{26}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{41}{12}\times \frac{3}{82}
Add 26 and 15 to get 41.
\frac{41\times 3}{12\times 82}
Multiply \frac{41}{12} times \frac{3}{82} by multiplying numerator times numerator and denominator times denominator.
\frac{123}{984}
Do the multiplications in the fraction \frac{41\times 3}{12\times 82}.
\frac{1}{8}
Reduce the fraction \frac{123}{984} to lowest terms by extracting and canceling out 123.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}