Solve for P (complex solution)
\left\{\begin{matrix}P=0\text{, }&p\neq 0\\P\in \mathrm{C}\text{, }&p=\frac{383}{184}\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=0\text{, }&p\neq 0\\P\in \mathrm{R}\text{, }&p=\frac{383}{184}\end{matrix}\right.
Solve for p
\left\{\begin{matrix}\\p=\frac{383}{184}\text{, }&\text{unconditionally}\\p\neq 0\text{, }&P=0\end{matrix}\right.
Share
Copied to clipboard
\left(173-4773+0\times 1p^{12}+\frac{1750+7825}{p}\right)Pp=0
Multiply both sides of the equation by p.
\left(-4600+0\times 1p^{12}+\frac{1750+7825}{p}\right)Pp=0
Subtract 4773 from 173 to get -4600.
\left(-4600+0p^{12}+\frac{1750+7825}{p}\right)Pp=0
Multiply 0 and 1 to get 0.
\left(-4600+0+\frac{1750+7825}{p}\right)Pp=0
Anything times zero gives zero.
\left(-4600+\frac{1750+7825}{p}\right)Pp=0
Add -4600 and 0 to get -4600.
\left(-4600+\frac{9575}{p}\right)Pp=0
Add 1750 and 7825 to get 9575.
\left(-\frac{4600p}{p}+\frac{9575}{p}\right)Pp=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -4600 times \frac{p}{p}.
\frac{-4600p+9575}{p}Pp=0
Since -\frac{4600p}{p} and \frac{9575}{p} have the same denominator, add them by adding their numerators.
\frac{\left(-4600p+9575\right)P}{p}p=0
Express \frac{-4600p+9575}{p}P as a single fraction.
\frac{\left(-4600p+9575\right)Pp}{p}=0
Express \frac{\left(-4600p+9575\right)P}{p}p as a single fraction.
P\left(-4600p+9575\right)=0
Cancel out p in both numerator and denominator.
-4600Pp+9575P=0
Use the distributive property to multiply P by -4600p+9575.
\left(-4600p+9575\right)P=0
Combine all terms containing P.
\left(9575-4600p\right)P=0
The equation is in standard form.
P=0
Divide 0 by -4600p+9575.
\left(173-4773+0\times 1p^{12}+\frac{1750+7825}{p}\right)Pp=0
Multiply both sides of the equation by p.
\left(-4600+0\times 1p^{12}+\frac{1750+7825}{p}\right)Pp=0
Subtract 4773 from 173 to get -4600.
\left(-4600+0p^{12}+\frac{1750+7825}{p}\right)Pp=0
Multiply 0 and 1 to get 0.
\left(-4600+0+\frac{1750+7825}{p}\right)Pp=0
Anything times zero gives zero.
\left(-4600+\frac{1750+7825}{p}\right)Pp=0
Add -4600 and 0 to get -4600.
\left(-4600+\frac{9575}{p}\right)Pp=0
Add 1750 and 7825 to get 9575.
\left(-\frac{4600p}{p}+\frac{9575}{p}\right)Pp=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -4600 times \frac{p}{p}.
\frac{-4600p+9575}{p}Pp=0
Since -\frac{4600p}{p} and \frac{9575}{p} have the same denominator, add them by adding their numerators.
\frac{\left(-4600p+9575\right)P}{p}p=0
Express \frac{-4600p+9575}{p}P as a single fraction.
\frac{\left(-4600p+9575\right)Pp}{p}=0
Express \frac{\left(-4600p+9575\right)P}{p}p as a single fraction.
P\left(-4600p+9575\right)=0
Cancel out p in both numerator and denominator.
-4600Pp+9575P=0
Use the distributive property to multiply P by -4600p+9575.
\left(-4600p+9575\right)P=0
Combine all terms containing P.
\left(9575-4600p\right)P=0
The equation is in standard form.
P=0
Divide 0 by -4600p+9575.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}