Solve for x
x = \frac{18807043929090645}{8746197071393957} = 2\frac{1314649786302730}{8746197071393957} \approx 2.150311018
Graph
Share
Copied to clipboard
{(15 + x)} 0.8746197071393957 = 15
Evaluate trigonometric functions in the problem
15+x=\frac{15}{0.8746197071393957}
Divide both sides by 0.8746197071393957.
15+x=\frac{150000000000000000}{8746197071393957}
Expand \frac{15}{0.8746197071393957} by multiplying both numerator and the denominator by 10000000000000000.
x=\frac{150000000000000000}{8746197071393957}-15
Subtract 15 from both sides.
x=\frac{150000000000000000}{8746197071393957}-\frac{131192956070909355}{8746197071393957}
Convert 15 to fraction \frac{131192956070909355}{8746197071393957}.
x=\frac{150000000000000000-131192956070909355}{8746197071393957}
Since \frac{150000000000000000}{8746197071393957} and \frac{131192956070909355}{8746197071393957} have the same denominator, subtract them by subtracting their numerators.
x=\frac{18807043929090645}{8746197071393957}
Subtract 131192956070909355 from 150000000000000000 to get 18807043929090645.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}