Solve for x
x = \frac{940}{31} = 30\frac{10}{31} \approx 30.322580645
Graph
Share
Copied to clipboard
2205-22.05x=\left(x-10\right)\times 33.6+\left(x-10\right)\times 4200\times 0.01
Use the distributive property to multiply 100-x by 22.05.
2205-22.05x=33.6x-336+\left(x-10\right)\times 4200\times 0.01
Use the distributive property to multiply x-10 by 33.6.
2205-22.05x=33.6x-336+\left(x-10\right)\times 42
Multiply 4200 and 0.01 to get 42.
2205-22.05x=33.6x-336+42x-420
Use the distributive property to multiply x-10 by 42.
2205-22.05x=75.6x-336-420
Combine 33.6x and 42x to get 75.6x.
2205-22.05x=75.6x-756
Subtract 420 from -336 to get -756.
2205-22.05x-75.6x=-756
Subtract 75.6x from both sides.
2205-97.65x=-756
Combine -22.05x and -75.6x to get -97.65x.
-97.65x=-756-2205
Subtract 2205 from both sides.
-97.65x=-2961
Subtract 2205 from -756 to get -2961.
x=\frac{-2961}{-97.65}
Divide both sides by -97.65.
x=\frac{-296100}{-9765}
Expand \frac{-2961}{-97.65} by multiplying both numerator and the denominator by 100.
x=\frac{940}{31}
Reduce the fraction \frac{-296100}{-9765} to lowest terms by extracting and canceling out -315.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}